
TRANSFORMATION OF A CORE
SCENARIO MODEL AND

ACTIVITY DIAGRAMS INTO
PETRI NETS

By

Shahbaz Maqbool

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters in Computer Science*

Under the auspices of the Ottawa-Carleton Institute for Computer Science

School of Information Technology and Engineering

University of Ottawa

Ottawa, Ontario, Canada
September 2005

* The Masters program in Computer Science is a joint program with
Carleton University, administered by the Ottawa Carleton Institute for
Computer Science.

© Shahbaz Maqbool, Ottawa, Canada, 2005

 The undersigned recommend to the Faculty of
Graduate Studies and Research acceptance of the thesis

TRANSFORMATION OF A CORE
SCENARIO MODEL AND

ACTIVITY DIAGRAMS INTO
PETRI NETS

Submitted by Shahbaz Maqbool
in partial fulfillment of the requirements for the degree of

Masters in Computer Science

__

Director, School of Computer Science

Dr. Gregor v.Bochmann, Thesis Supervisor

University of Ottawa
September 2005

i

Abstract

For any software development project it is important to capture the requirements in a

clear and concise manner. Standardization efforts, such as the development of version 2

of the Unified Modeling Language (UML) by the Object Management Group, and the

development of the User Requirements Notation (URN) by the International

Telecommunication Union, propose visual languages for capturing requirements in terms

of scenario notations. Activity Diagrams and Use Case Maps (UCM) are examples of

such scenario languages in UML and in URN, respectively. The developers of these

languages have concentrated on the visual notations and only a small amount of effort has

been spent in defining precise and formal semantics for these languages.

Core Scenario Model (CSM) is a step towards defining formal semantics to the scenario

based languages like UCM, Activity Diagrams and Interaction Diagrams. It includes

common scenario information found in the UCM notation and in UML 2.0 Activity

Diagrams and Interaction Diagrams, and has been developed as an intermediate language

before transformation into formal languages like Petri Nets, Layered Queuing Network

etc.

The thesis proposes a transformation method that takes UML Activity Diagrams as input

and generates equivalent Petri Nets as output. The transformation approach takes into

account the concurrency characteristics of Activity Diagrams.

The thesis also proposes a method for transforming a Core Scenario Model (CSM)

representation into equivalent Petri Nets. A Java tool was designed and built for realizing

the proposed transformation from CSM to Petri Nets. The application takes as input XML

files produced by an existing tool, which contain CSM in XML format. The Petri Nets

produced by our transformation is in XML format. It can be used for validating the

original models by simulation. The results from this analysis can be traced back to

improve design decisions.

ii

Table of Contents

ABSTRACT ...I

TABLE OF CONTENTS ...II

LIST OF FIGURES ... VI

LIST OF TABLES... VIII

ACKNOWLEDGMENTS... IX

GLOSSARY... X

CHAPTER 1 INTRODUCTION .. - 1 -

1.1 Background / Context ..- 1 -

1.2 Objective and Motivation ..- 3 -

1.3 Scope and Contribution of the Thesis...- 4 -

1.4 Thesis outline ..- 5 -

CHAPTER 2 LITERATURE REVIEW.. - 6 -

2.1 Use Case Maps ..- 6 -
2.1.1 UCM Notation ..- 6 -
2.1.2 UCM Navigator ..- 9 -

2.2 Unified Modeling Language ..- 9 -
2.2.1 Major Improvements in UML 2.0...- 11 -
2.2.1 UML Metamodel ..- 12 -

2.3 Model Driven Architecture..- 13 -
2.3.1 Raising the Level of Abstraction ..- 14 -
2.3.2 Raising the Level of Reuse ...- 14 -

2.4 UML2.0 Activity Diagram ...- 16 -
2.4.1 Action Nodes ..- 18 -
2.4.2 Control Nodes...- 19 -

2.4.2.1 Initial Node ...- 19 -
2.4.2.2 Decision Node...- 20 -
2.4.2.3 Merge Node ..- 20 -
2.4.2.4 Fork Node ...- 21 -
2.4.2.5 Join Node ..- 21 -
2.4.2.6 Final Node...- 22 -

2.4.3 Activity Edge..- 23 -

iii

2.4.4 Object Nodes ..- 24 -
2.4.4.1 Activity Parameter Node...- 24 -
2.4.4.2 Pins..- 25 -
2.4.4.3 Central Buffer ...- 26 -
2.4.4.4 Data Store..- 26 -

2.4.5 Partitions...- 27 -
2.4.6 Usage of Activity Diagrams ...- 27 -

2.4.6.1 Modeling an operation ..- 28 -
2.4.6.2 Modeling a workflow..- 28 -

2.5 Petri Nets ...- 28 -
2.5.1 Definition..- 28 -
2.5.2 Petri Net Metamodel...- 30 -
2.5.3 Colored Petri Nets...- 31 -
2.5.4 CPN Tools ..- 33 -

2.6 Work on Activity Diagrams into Petri Nets ...- 33 -

2.7 Extensible Markup Language, Document Type Definition, XML Schema, Document Object
Model, XSLT...- 34 -

2.7.1 XML ...- 34 -
2.7.2 Document Type Definition ...- 35 -
2.7.3 XML Schema..- 37 -
2.7.4 DOM...- 39 -
2.7.5 Extensible Stylesheet Language ...- 42 -
2.7.6 The Xerces XML Parser ...- 43 -

2.8 Chapter Summary ..- 43 -

CHAPTER 3 CORE SCENARIO MODEL (CSM) .. - 45 -

3.1 Overview..- 45 -

3.2 Comparison of UCM and UML Activity Diagrams...- 48 -

3.3 Definition of the CSM ..- 51 -
3.3.1 Class Description of CSM Core Package ...- 56 -

3.3.1.1 CSM..- 56 -
3.3.1.2 Scenario ..- 57 -
3.3.1.3 Step ...- 58 -
3.3.1.4 Refinement..- 58 -
3.3.1.5 InBinding ..- 59 -
3.3.1.6 OutBinding..- 59 -
3.3.1.7 PathConnection ...- 60 -
3.3.1.8 Start ...- 60 -
3.3.1.9 End ..- 61 -
3.3.1.10 Sequence ...- 61 -
3.3.1.11 Branch...- 61 -
3.3.1.12 Merge ..- 62 -
3.3.1.13 Fork...- 62 -
3.3.1.14 Join..- 62 -
3.3.1.15 Classifier ...- 63 -
3.3.1.16 Message...- 63 -

3.3.2 Class Description of CSM Function Package ...- 64 -
3.3.2.1 Constraint..- 64 -

iv

3.3.2.2 PreCondition ...- 64 -
3.3.2.3 PostCondition..- 64 -
3.3.2.4 InputSet ...- 65 -
3.3.2.5 OutputSet ..- 65 -

3.3.3 Class Description of CSM Performance Package...- 65 -
3.3.3.1 GeneralResource ...- 65 -
3.3.3.1 ResourceAcquire...- 66 -
3.3.3.3 ResourceRelease ...- 66 -
3.3.3.4 ActiveResource ...- 67 -
3.3.3.5 PassiveResource..- 67 -
3.3.3.6 Component..- 68 -
3.3.3.7 Workload...- 68 -
3.3.3.8 PerfMeasure ..- 69 -
3.3.3.9 PerfValue ..- 70 -

3.4 Advantages of Core Scenario Model...- 70 -

3.5 XML Schema for CSM ..- 70 -

3.6 Chapter Summary ..- 71 -

CHAPTER 4 TRANSLATION OF ACTIVITY DIAGRAMS INTO PETRI NETS- 72
-

4.1 Overview..- 72 -

4.2 Activity Diagrams, CSM and Petri Nets...- 72 -

4.2 Transformation Rules from Activity Diagrams to Petri Nets...- 73 -
4.2.1 Executable / Action Nodes ...- 73 -
4.2.2 Control Nodes...- 74 -

4.2.2.1 Initial Nodes..- 74 -
4.2.2.2 Decision Node...- 74 -
4.2.2.3 Merge Node ..- 74 -
4.2.2.4 Fork Node ...- 75 -
4.2.2.5 Join Node ..- 75 -
4.2.2.6 Final Node...- 75 -

4.2.3 Object Nodes ..- 75 -
4.2.4 Activity Edges ..- 76 -
4.2.5 Activity Partition ..- 77 -

4.3 Simplification of Activity Diagrams before Transformation..- 78 -
4.3.1 An Action Node followed by a Fork Node...- 78 -
4.3.2 A Fork Node followed by a Fork Node ..- 79 -
4.3.3 A Join Node followed by a Fork Node ...- 80 -
4.3.4 A Join Node Followed by a Join Node ...- 81 -
4.3.5 A Decision Node Followed by a Decision Node ..- 82 -
4.3.6 A Merge Node Followed by a Decision Node..- 83 -
4.3.7 A Merge Node Followed by a Merge Node..- 84 -

4.4 Examples ...- 84 -

4.5 Elements Not Mapped..- 88 -

v

4.6 Chapter Summary ..- 89 -

CHAPTER 5 CSM TO PETRI NETS.. - 90 -

5.1 Overview..- 90 -

5.2 Mapping from CSM to Petri Nets ...- 91 -

5.3 Transformation Algorithm ..- 91 -

5.4 Details of the implementation..- 93 -

5.6 Chapter Summary ..- 94 -

CHAPTER 6 CASE STUDIES ... - 95 -

6.1 Case Study 1..- 95 -
6.1.1 UCM Representation of Simple Call Request ..- 95 -
6.1.2 UCM to CSM Transformation ..- 97 -
6.1.3 CSM to Petri Net Transformation... - 101 -
6.1.4 List of Elements/Associations/Attributes Covered ... - 102 -

6.2 Case Study 2.. - 103 -
6.2.2 List of Elements/Associations/Attributes Covered ... - 103 -

6.4 Chapter Summary .. - 104 -

CHAPTER 7 CONCLUSION ... - 105 -

7.1 Conclusion... - 105 -

7.2 Future work .. - 106 -

APPENDICES.. - 107 -

A. Core Scenario Model Schema... - 107 -

B. Colored Petri Nets Document Type Definition (DTD).. - 120 -

C. Graphical Views of CSM Schema and Petri Nets DTD.. - 125 -

D. Petri Net representation of Transformed CSM discussed as Case Study 1 - 137 -

REFERENCES .. - 158 -

vi

List of Figures

FIGURE 1.1: DIFFERENT POSSIBILITIES FOR TRANSFORMATIONS...- 3 -
FIGURE 2.1: BASIC NOTATIONS IN UCM (TAKEN FROM [2]) ..- 6 -
FIGURE 2.2: SHARED ROUTES AND OR-FORKS/JOINS (TAKEN FROM [2])- 7 -
FIGURE 2.3: CONCURRENT ROUTES WITH AND-FORKS/JOINS (TAKEN FROM [2])- 7 -
FIGURE 2.4: DYNAMIC COMPONENTS AND DYNAMIC RESPONSIBILITIES (TAKEN FROM [2])-

8 -
FIGURE 2.5: STUBS AND PLUG-INS (TAKEN FROM [2]) ...- 8 -
FIGURE 2.6: PATH INTERACTIONS (TAKEN FROM [2]) ..- 8 -
FIGURE 2.7: TIMERS, ABORTS, FAILURES, AND SHARED RESPONSIBILITIES (TAKEN FROM

[2]) ..- 9 -
FIGURE 2.8: UML SINCE INCEPTION .. - 10 -
FIGURE 2.9: FOUR-LAYER METAMODEL ARCHITECTURE...- 13 -
FIGURE 2.10: RAISING THE LEVEL OF ABSTRACTION (TAKEN FROM [31])- 14 -
FIGURE 2.11: RAISING THE LEVEL OF REUSE (TAKEN FROM [31])...- 15 -
FIGURE 2.12: CLASS DIAGRAM FOR ACTIVITY NODES IN ACTIVITY DIAGRAM (TAKEN

FROM [26]) ..- 17 -
FIGURE 2.13: CLASS DIAGRAM FOR ACTIVITY EDGES IN ACTIVITY DIAGRAM (TAKEN

FROM [26]) ..- 17 -
FIGURE 2.14: ACTION NOTATION...- 18 -
FIGURE 2.15: CONTROL AND DATA FLOW INTO AN ACTION (TAKEN FROM [5]).................- 18 -
FIGURE 2.16: CONTROL AND DATA FLOW OUT OF AN ACTION (TAKEN FROM [5])- 19 -
FIGURE 2.17: CONTROL NODES (TAKEN FROM [6])..- 19 -
FIGURE 2.18: INITIAL NODE (TAKEN FROM [6]) ..- 20 -
FIGURE 2.19: DECISION NODE (TAKEN FROM [6]) ..- 20 -
FIGURE 2.20: MERGE NODE WITH ALTERNATE FLOWS (TAKEN FROM [6])- 21 -
FIGURE 2.21: FORK NODE (TAKEN FROM [6])..- 21 -
FIGURE 2.22: JOIN NODE (TAKEN FROM [6])..- 22 -
FIGURE 2.23: FLOW FINAL NODE (TAKEN FROM [6])...- 22 -
FIGURE 2.24: ACTIVITY FINAL NODE (TAKEN FROM [6]) ...- 23 -
FIGURE 2.25: ACTIVITY EDGE ...- 23 -
FIGURE 2.26: OBJECT NODES (TAKEN FROM [7])..- 24 -
FIGURE 2.27: ACTIVITY PARAMETER NODES (TAKEN FROM [7])...- 24 -
FIGURE 2.28: INPUT PINS (TAKEN FROM [7]) ...- 25 -
FIGURE 2.29: PINS SHOWING EFFECT OF ACTIONS ON OBJECTS (TAKEN FROM [7])- 25 -
FIGURE 2.30: TOKEN COMPETITION (TAKEN FROM [7]) ...- 26 -
FIGURE 2.31: CENTRAL BUFFER (TAKEN FROM [7]) ..- 26 -
FIGURE 2.32: DATA STORE NODE (TAKEN FROM [7])..- 26 -
FIGURE 2.33: PARTITION EXAMPLE, SWIMLANE NOTATION (TAKEN FROM [8])- 27 -
FIGURE 2.34: FIRING EXAMPLE ..- 29 -
FIGURE 2.35: PETRI NET METAMODEL ...- 30 -
FIGURE 2.36: DOM WORKING [25] ..- 40 -
FIGURE 2.37: HIGH LEVEL VIEW OF CREATING A DOM TREE FROM XML DOCUMENTS...- 41 -
FIGURE 2.38: TRANSFORMATION OF XML DOCUMENT USING XSLT- 42 -
FIGURE 3.1: TRANSFORMATIONS WITHOUT CORE SCENARIO MODEL..................................- 47 -
FIGURE 3.2: TRANSFORMATIONS WITH CORE SCENARIO MODEL..- 48 -
FIGURE 3.3: PACKAGE DIAGRAM...- 52 -
FIGURE 3.4: INITIAL CSMMETA CLASS DIAGRAM...- 53 -
FIGURE 3.5: PACKAGE DIAGRAM FOR CORE SCENARIO MODEL METAMODEL- 54 -
FIGURE 3.6: CLASS DIAGRAM FOR CORE PACKAGE CSM METAMODEL.- 54 -
FIGURE 3.7: CLASS DIAGRAM FOR PERFORMANCE PACKAGE OF CSM METAMODEL.......- 55 -
FIGURE 3.8: CLASS DIAGRAM FOR FUNCTIONAL PACKAGE OF CSM METAMODEL...........- 56 -

vii

FIGURE 4.1: AN ACTION NODE IS FOLLOWED BY A FORK NODE. ...- 78 -
FIGURE 4.2: A FORK NODE IS FOLLOWED BY A FORK NODE..- 79 -
FIGURE 4.3: A JOIN NODE IS FOLLOWED BY A FORK NODE..- 80 -
FIGURE 4.4: A JOIN NODE IS FOLLOWED BY A JOIN NODE..- 81 -
FIGURE 4.5: A DECISION NODE IS FOLLOWED BY A DECISION NODE....................................- 82 -
FIGURE 4.6: A MERGE NODE IS FOLLOWED BY A DECISION NODE.- 83 -
FIGURE 4.7: A MERGE NODE IS FOLLOWED BY A MERGE NODE ...- 84 -
FIGURE 4.8: ACTIVITY DIAGRAM FOR ORDER PROCESSING ..- 85 -
FIGURE 4.9: ACTIVITY DIAGRAM AFTER SIMPLIFICATION FOR ORDER PROCESSING- 85 -
FIGURE 4.10: PETRI NET AFTER TRANSFORMATION FOR ORDER PROCESSING- 86 -
FIGURE 4.11: ACTIVITY DIAGRAM FOR TROUBLE TICKET..- 87 -
FIGURE 4.12: ACTIVITY DIAGRAM AFTER SIMPLIFICATION FOR TROUBLE TICKET..........- 87 -
FIGURE 4.13: PETRI NET AFTER TRANSFORMATION FOR TROUBLE TICKET- 88 -
FIGURE 5.1: HIGH LEVEL VIEW OF TRANSFORMATION FROM UCM TO CSM AND FROM CSM

TO PETRI NETS ..- 90 -
FIGURE 5.2: HIGH LEVEL VIEW OF APPLICATIONS WORKING ..- 94 -
FIGURE 6.1: CALL ROOT MAP IN UCM ...- 95 -
FIGURE 6.2: OCS PLUG-IN IN UCM...- 96 -
FIGURE 6.3: TERMINATING PLUG-IN IN UCM...- 96 -
FIGURE 6.4: BASIC CALL ROOT MAP IN CSM ... - 100 -
FIGURE 6.5: OCS PLUG-IN CSM .. - 100 -
FIGURE 6.6: TERMINATING PLUG-IN IN CSM ... - 101 -
FIGURE 6.7: BASIC CALL ROOT MAP IN PETRI NET .. - 101 -
FIGURE 6.8: OCS PLUG-IN PETRI NETS... - 102 -
FIGURE 6.9: TERMINATING PLUG-IN IN PETRI NET .. - 102 -
FIGURE 6.10: WIRELESS TELEPHONY... - 103 -

viii

List of Tables

TABLE 3.1 CONCEPT COMPARISON OF UCM AND UML ACTIVITY DIAGRAMS - 50 -
TABLE 4.1: CONCEPT COMPARISON ACTIVITY DIAGRAMS AND PETRI NETS - 73 -
TABLE 4.2: TRANSLATION RULES OF ACTIVITY EDGES TO PETRI NETS - 77 -

ix

Acknowledgments

I am most grateful to my supervisor, Professor Gregor v.Bochmann, for his

encouragement, guidance, support and patience throughout this research. Without his

help, advice and trust, my studies in this area would not have been possible.

I would like to thank University of Ottawa, the School of Information Technology and

Engineering for giving me the opportunity to do my thesis work. I would also like to

thank the members of AIAS lab for creating a wonderful working environment and for

their technical support.

 I am very grateful to my wife Ambreen Shahbaz, for her moral support and constant

encouragement. She and my son, Ahmad Shahbaz were very patient throughout many

days and weekends where they missed fun because dad had some work to do. I am so

grateful to my father, mother, father in law, mother in law and all of my brothers and

sisters for their support and understanding. Their prayers were also a major factor in the

success of my work. I would like to dedicate this thesis to my father, Maqbool Hussain.

His dedication to raising us in the best way he could is the biggest reason of success of

my brothers, sisters, and me.

I extend my appreciation to all my friends for their helpful comments and suggestions.

x

Glossary

API. Application Program Interface

CPN. Colored Petri Nets

CSM. Core Scenario Model

DOM. Document Object Model

DTD. Document Type Declaration

ITU. International Telecommunication Union

LQN. Layered Queuing Networks

MDA. Model Driven Architecture

MOF. Meta Object Facility

OMG. Object Management Group

PN. Petri Nets

SPE. Software Performance Engineering

UCM. Use Case Maps

UML. Unified Modeling Language

URN. User Requirements Notations

XMI. XML Metadata Interchange

XML. Extensible Markup Language

XSL. XML Style Sheet Language

Chapter 1 Introduction

- 1 -

Chapter 1 Introduction

1.1 Background / Context

For any software development project it is important to capture the requirements in a

clear and concise manner. Requirements engineering addresses the development and

validation of methods for eliciting, representing, analyzing, and confirming system

requirements and with methods for transforming requirements into specifications for

design and implementation. The last few decades have resulted in an evolution of

software design methodologies towards requirements engineering and high-level design,

where the errors are the most costly for software producers.

The success of large complex, reactive and safety- critical software is largely dependent

on capturing precise and correct requirements. Standardization efforts, such as the

development of version 2 of the Unified Modeling Language (UML) by the Object

Management Group (OMG), and the development of the User Requirements Notation

(URN) by the International Telecommunication Union (ITU-T), propose visual languages

for capturing requirements in terms of scenario notations. Activity Diagrams (ADs) and

Use Case Maps (UCMs) are examples of such scenario languages in UML and in URN,

respectively. These scenario-based requirement specification techniques are very

attractive and user-friendly. Their application to the requirements at early stages of the

design process helps in

1) Preparing concise, descriptive, maintainable and consistent documents,

2) Preparing design specifications,

3) Developing models at lower cost and improving their correctness and traceability with

respect to requirements,

4) Faster implementation at lower cost and improving their correctness and traceability

with respect to requirements, and

5) Overall validation and evolution of the system.

Chapter 1 Introduction

- 2 -

These tasks pave the way to the generation of complete, consistent, and unambiguous

specifications of system behavior that are well suited for design and implementation

activities.

Although the above mentioned languages provide an accessible visualization of models,

they lack formal precise semantics. Up till now significant research has been devoted to

the development of visual requirements by the OMG and the ITU, and only a small

amount of effort has been spent in defining precise and formal semantics for these visual

languages. In my research work, the focus is to transform UCM (Use Case Maps) and

UML (Unified Modeling Language) Activity Diagrams to Petri nets. Petri net is a

graphical and mathematical modeling language. It consists of places, transitions, arcs and

tokens. Input arcs connect places with transitions, while output arcs start at a transition

and end at a place. Petri nets are a promising tool for describing and studying systems

that are characterized as being concurrent, asynchronous, distributed, parallel,

nondeterministic, and/or stochastic. As a graphical tool, Petri nets can be used as a visual-

communication aid similar to flow charts, block diagrams, and networks. In addition,

tokens are used in these nets to simulate the dynamic and concurrent activities of

systems. As a mathematical tool, it is possible to set up state equations, algebraic

equations, and other mathematical models governing the behavior of systems.

The Core Scenario Model (CSM) [24] notation has been developed for functional

analysis and preliminary performance analysis of software systems. We were involved in

the development of CSM and proposed some important concepts like refinement of a

Step into a Scenario by proposing mapping of inputs and outputs of such Steps,

alternative sets of inputs and outputs to Step etc, to be incorporated in the metamodel.

With the CSM, a two-step transformation process is proposed. In the first step it proposes

that a CSM be generated from the above mentioned scenario languages and in the second

step this CSM can then be transformed into formal languages like Petri Nets, Layered

Queuing Network etc.

Figure 1.1 represents different possibilities of transformation of activity diagrams and

UCMs into Petri Nets. The transformation can either be in one step i.e. from UCM and

Chapter 1 Introduction

- 3 -

Activity diagrams to Petri nets or in two steps, first to CSM and then to Petri Nets. In a

two step approach the performance information in the UML/UCM models can be

gathered and added to the CSM and the resulting model can then be transformed to Petri

Nets. The results achieved from the functional and performance analysis can be fed back

for making critical design decision.

Figure 1.1: Different possibilities for transformations

1.2 Objective and Motivation

It is well known fact that the cost of requirements errors is much lower when found at the

requirements and design stages and much higher when found during the implementation.

So validation of requirements specifications at early stages of software development is

very important. It is the process of checking whether the requirements specifications meet

the intentions and expectations of the stakeholders. Several approaches have been

proposed for validating the requirements of software projects but in many design

processes we simply skip these tasks and move from informal requirements directly to

component-based specifications. The use of notation based languages like Use Case

Maps [1], UML Activity Diagrams [26] etc has increased a lot particularly in the last

decade. These languages are either informal or semi-formal and cannot be used for

Chapter 1 Introduction

- 4 -

validation of the system. In order to validate the requirements it is necessary to translate

the requirements from informal languages to formal languages like Petri Nets, Layered

Queuing Networks etc. The results of the functional analysis should be fed back to have a

precise requirements for the system to be built. This would allow the design process to

focus on the main functional aspects of the system to be specified, and hence better cope

with some of the complex problems related to the design, documentation, validation, and

maintenance of systems and standards.

The goal of the thesis is to devise a method for transforming Activity Diagrams and Core

Scenario Models into Petri Net. An implementation for automatic transformation of CSM

to Petri Nets is also a part of this thesis. Both the CSM (input) and Petri Net (output) are

represented in XML format.

1.3 Scope and Contribution of the Thesis

The thesis proposes a method to convert a UML Activity diagrams to Petri nets. It also

proposes a tool for converting the functional aspects of the Core Scenario Model (CSM)

to Petri Nets. The functional aspects include concepts like: when will a scenario start

executing, when will it terminate, how the different activities are sequenced, are there

any activities which can be done in parallel, are there any constraints on the activity

(preconditions and postconditions), what will be the output of an activity, etc. CSM is

discussed in detail in Chapter 4. The contributions of the thesis are summarized as

follows:

 Define transformation rules from Activity Diagrams UML 2.0 to colored Petri

Nets.

 Define transformation rules from the CSM to Petri Nets. Identify the metamodel

classes/objects used to represent the CSM, and express each transformation rule in

terms of Petri Net metamodel objects, their attributes and relationships.

 Design, implement and test a tool that realizes the CSM to Petri Net

transformation. The tool takes as input XML files produced by an UCMNav tool,

which contain CSM in XML format. The input CSM is transformed into

Chapter 1 Introduction

- 5 -

equivalent Petri Nets, which are expressed also in XML format according to the

format for Colored Petri Net used with CPN tools [12].

 Provided some example applications.

1.4 Thesis outline

This thesis is organized as follows:

Chapter 2 provides an overview of the background information required for this thesis,

such as Use Case Maps, Unified Modeling language, UML metamodel, Model Driven

Architecture, UML 2.0 Activity Diagrams, Extensible Markup Language, Document

Type Definition, XML Schema, Document Object Model and Petri Nets. It also reviews

some of the tools being used for XML parsing and for modeling colored Petri Nets.

Chapter 3 presents an overview of the Core Scenario Model (CSM), its metamodel and

XML representation. It also discusses the benefits of using CSM.

Chapter 4 describes how the concepts introduced in Activity Diagrams UML 2.0 can be

mapped on Petri Nets. It also describes some simplification rules.

Chapter 5 describes how the concepts of Core Scenario Model can be mapped to Petri

Nets.

Chapter 6 presents a case study that is developed to validate and verify the

transformation process.

Chapter 7 concludes the thesis research, summarizes contributions of the thesis, and

identifies directions for future research.

Chapter 2 Literature Review

- 6 -

Chapter 2 Literature Review
This chapter presents an overview of the background information related to the thesis,

such as Use Case Maps (UCM), Unified Modeling Language (UML), the Extensible

Markup Language (XML), Petri nets, UML design tools and the Core Scenario Model.

2.1 Use Case Maps

The Use Case Map (UCM) notation was developed at Carleton University by Professor

Buhr and his team [11], and it has been used for the description and understanding of a

wide range of complex applications since 1992. This section provides an overview of Use

Case Maps.

2.1.1 UCM Notation
UCM is a very simple notation for requirements specification, design and testing of

software systems. It represents scenarios as paths. A Path has a Start Point and End

Point. Components are used to show logical or functional entities like hardware,

software, actors, etc.

Figure 2.1 illustrates four basic notation elements of UCMs: start points, responsibilities,

end points, and components.

Figure 2.1: Basic Notations in UCM (taken from [2])

Chapter 2 Literature Review

- 7 -

If a responsibility is shown inside a component it is said to be bound to a component and

in this case, the component is responsible to perform the action, task, or function

represented by the responsibility.

An OR-Join is used to merge two or more incoming paths together while an OR-fork is

used to split a path into two or more alternatives. Alternatives may have guards

represented as labels in between square brackets.

Figure 2.2: Shared Routes and OR-Forks/Joins (taken from [2])

An AND-join is used to synchronize two or more paths together while an AND-fork is

used to split a path into two or more concurrent segments.

Figure 2.3: Concurrent Routes with AND-Forks/Joins (taken from [2])

There are different types of Components in UCM. Some of the important ones are

illustrated in Figure 2.4. Rectangles are called teams and can contain any type of

component. Parallelograms are called active components or processes, which usually

imply a control thread. Rounded rectangles are called passive components or objects

which are usually controlled. Dashed components are called slots and may be populated

with different component instances at different times [1].

Chapter 2 Literature Review

- 8 -

Figure 2.4: Dynamic Components and Dynamic Responsibilities (taken from [2])

If a UCM map becomes complex to be represented as a single map then Stubs can be

used to define sub-maps. A stub contains separately specified sub-maps called plug-ins.

A plug-in has further detail information about a given aspect of a scenario. Stubs are of

two kinds as shown in Figure 2.5.

Figure 2.5: Stubs and Plug-ins (taken from [2])

 Static stubs: can contain only one plug-in and are represented as plain diamonds.

 Dynamic stubs: can contain more than one plug-ins and are represented as

dashed diamonds.

Different paths in a UCM map may interact with each other synchronously or

asynchronously. This has been shown in Figure 2.6

Figure 2.6: Path Interactions (taken from [2])

Chapter 2 Literature Review

- 9 -

Some other important notational elements include

 Timer: are triggered by arrival of a specific event.

 Abort: are used to show termination of one path by another path.

 Failure point: are used to show potential failure points on a path.

 Shared responsibility: are used to represent a complex activity that involves

negotiation between two or more components.

Figure 2.7: Timers, Aborts, Failures, and Shared Responsibilities (taken from [2])

2.1.2 UCM Navigator
UCMNav is the only available tool for editing Use Case Maps. It supports the UCM

notation and the XML format [23]. It can be used for the creation, navigation, and

maintenance of UCMs. A plug-in for generating Core Scenario Model from UCMs has

also been developed recently [37]. This thesis uses the XML output of this plug-in and

transforms it into an XML representation of Petri Nets. The output generated is compliant

to the XML structure (DTD) shown in Appendix D.

2.2 Unified Modeling Language

The Unified Modeling Language (UML) developed by the Object Management Group

(OMG) is one of the last decade's most important contributions to software engineering.

In a relatively short time it has emerged as the industry standard for designing and

visualizing software systems. It provides several kinds of diagrams, which allow the

description of different aspects and properties of systems, like static and behavioral

Chapter 2 Literature Review

- 10 -

aspects, interaction among system components and physical implementation details.

Figure 2.8 shows the various version of UML introduced since its appearance.

Figure 2.8: UML since inception

UML 2.0 diagrams can be divided into three major categories

1) Structural Diagrams

 Class diagrams

 Object diagrams

 Package diagrams

 Component diagrams

 Deployment diagrams

 Composite structure diagrams

2) Behavioral Diagrams

 Use case diagrams

 Activity diagrams

 State machine diagrams

Chapter 2 Literature Review

- 11 -

3) Interaction diagrams

 Interaction overview diagrams

 Timing diagrams

 Communication (collaboration) diagrams

 Sequence diagrams

It is recognized that performance analysis should be integrated in the software

development life cycle from the early stages. Reasons that are in favor of using

performance analysis during the software development include the end user’s

expectations, cost control and the fact that performance requirements are better met if

attention to performance problems is paid earlier rather than later. Since performance is a

dynamic property, scenarios play a key role in determining a system’s performance

characteristics from its UML models. In UML, a scenario is an instance of a use case [29]

and provides a means for the end user and the domain expert to state their expectations

about the desired behavior of a system to its developers [9][10]. Scenarios are usually

modeled either by activity diagrams or interaction diagrams. Activity diagrams provide

the overall operations of a system.

Several revisions have been made since the original appearance of UML. The latest

version UML 2.0 was officially adopted in October 2004 and provides some major

improvements over UML 1.5.

2.2.1 Major Improvements in UML 2.0
As compared with earlier versions, UML 2.0 seems to have matured into a more

complete language, with improved integration of the various parts. The major

improvements in UML 2.0 are:

 New concepts for describing the internal architectural structure of Classes,

Components and Collaborations by means of Part, Connector and Port.

 Introduction of inheritance of behavior in state machines and encapsulation of

sub- machines through use of entry and exit points.

Chapter 2 Literature Review

- 12 -

 An improved encapsulation of components through complex ports with

protocol state machines that can control interaction with the environment.

 Integration of actions and activities and the use of flow semantics instead of

state machines.

 Interactions are improved with better architectural and control concepts such

as composition, references, exceptions, loops and alternatives and an

improved overview with Interaction Overview Diagrams.

To deal with domain-specific issues UML defines three extension mechanisms:

stereotypes, constraints and tagged values. These mechanisms can be used to extend the

metaclasses defined by the UML metamodel. UML Profiles are packages that contain the

definition of extended metaclasses. In other words profiles describe UML dialects.

Profiles can be used to tailor the UML metamodel for different platforms (such as J2EE

or .NET) or domains. A profile for dealing with the performance issues of the system was

published in September 2003 [27].

2.2.1 UML Metamodel
The UML metamodel is defined as one of the layers of a four-layer metamodel

architecture, depicted in Figure 2.9. The four layers are:

 M0: domain-specific information

 M1: model of the domain-specific information, e.g. in UML

 M2: meta-model, e.g. definition of UML

 M3: meta-meta-model, e.g. definition of the way that UML is defined, e.g.

MOF.

Chapter 2 Literature Review

- 13 -

Figure 2.9: Four-layer Metamodel Architecture

The fundamental relationship between these layers is intended to be the instance-of

relationship, which is clearly expressed in the UML specification. The M3 level, Meta

Object Facility (MOF), defines the basic concepts from which specific metamodels are

created at the M2 level. This includes the UML metamodel, which is regarded as being an

instance-of the MOF meta-metamodel. Normal user models, created using the concepts

of the UML, are regarded as residing at the M1 level, and the ultimate run-time data is

regarded as residing at the M0 level.

2.3 Model Driven Architecture

The basic goal of model driven engineering (MDE) is that instead of writing code for an

application, developers design their solutions in a modeling language. These designs will

automatically generate code that with minimal customization can be mapped onto many

different platforms. There will of course, be some platform-specific issues to be

considered, but if successful, MDE promises to generate a big boost in productivity.

Model-based code generation will make software faster to create, to update, to port, and

to deliver.

In the last decade, there have been significant improvements in the ways in which

software is built. Two important ones are

1) raised level of abstraction of the languages used to express behavior, and

2) increased level of reuse in system construction.

Chapter 2 Literature Review

- 14 -

The Model Driven Architecture (MDA), also developed by the Object Management

Group, is based on the above mentioned ideas for software development. It also

introduces a new idea of design-time interoperability that ties these ideas together [31].

2.3.1 Raising the Level of Abstraction
An important development of last two decades is increased level of abstraction in

software development. Initially programmers used to work with zeros and ones and with

the introduction of higher level programming languages, like Java and C++, the level of

abstraction were raised considerably. With this raised level of abstraction at which

developers work, new tools to map from one layer to the next were also developed.

Developers now write in a high-level language that can be mapped to a lower-level

language automatically, instead of writing in the lower-level language that can be

mapped to assembly language, just as our predecessors wrote in assembly language and

had that translated automatically into machine language.

The next level of abstraction is the move to model-based development, in which we build

platform-independent models.

Figure 2.10: Raising the level of abstraction (taken from [31])

2.3.2 Raising the Level of Reuse
It is undoubtedly a fact that a major area of progress in the software industry has been

reuse. In the object oriented paradigm, objects encapsulate a limited number of

Chapter 2 Literature Review

- 15 -

subroutines and the data structures on which they operate [30]. By encapsulating data and

subroutines into a single unit, the level of reuse is increased from the level of a single

subroutine. A set of closely related objects, packaged together with a set of defined

interfaces, form a component. A component enables reuse at a higher level, because the

unit of reuse is larger.

Models provide abstractions of a physical system that allow engineers to reason about

that system by ignoring extraneous details while focusing on relevant ones. All forms of

engineering rely on models to understand complex, real-world systems. Models are used

in many ways: to predict system qualities, reason about specific properties when aspects

of the system are changed, and communicate key system characteristics to various

stakeholders. The models may be developed as a precursor to implementing the physical

system, or they may be derived from an existing system or a system in development as an

aid to understanding its behavior. By dividing work into domain models we can expose

interfaces at the level of rules.

Figure 2.11: Raising the level of reuse (taken from [31])

If an application is built using models and some changes are required in the application,

changes will be made in the application model by leaving implementation technologies

alone. If a need to retarget an application to a different implementation environment

arises just by selecting the models for the new environment we can regenerate code and

Chapter 2 Literature Review

- 16 -

there will be no need to modify the application models. In this manner the costs of

producing software will be lower; productivity will be higher, maintenance will be

cheaper and each new model that gets built will be an asset that can be subsequently

reused.

2.4 UML2.0 Activity Diagram

Activity diagrams are one of the behavioral diagrams in UML as already mentioned.

They focus on the sequence, conditions, and inputs and outputs for invoking other

behaviors. Activity Diagrams are primarily used to describe behavior of systems. They

can be used to model an operation associated with a use case or a class. Figures 2.12 and

2.13 show the metamodel of Activity Diagram UML 2.0 [26]. Activities contain nodes

connected by edges to form a complete flow graph. Control and data values flow along

the edges and are operated on by the nodes, routed to other nodes, or stored temporarily.

There are three kinds of nodes in activity models:

1. Executable / Action nodes operate on control and data values that they receive, and

provide control and data to other actions.

2. Control nodes route control and data tokens through the graph.

3. Object nodes hold data tokens temporarily as they wait to move through the Activity

diagram.

Activity nodes are connected by two kinds of directed edges:

1. Control flow edges connect actions to indicate that the action at the target end of the

edge cannot start until the source action finishes. Only control tokens can pass along

control flow edges.

2. Object flow edges connect objects nodes to provide inputs to actions. Only objects and

data tokens can pass along object flow edges.

Chapter 2 Literature Review

- 17 -

Figure 2.12: Class diagram for Activity Nodes in Activity Diagram (taken from [26])

Figure 2.13: Class diagram for Activity Edges in Activity Diagram (taken from [26])

Chapter 2 Literature Review

- 18 -

Important notations introduced in UML2.0 are

2.4.1 Action Nodes
An action as shown in the metamodel in Figure 2.12 is the only executable node in UML

Activity Diagrams. It has been defined for invoking behaviors, either directly or through

an operation. Actions are directly contained only in activities. Actions are notated with

round-cornered rectangles. The names can be written inside the action.

Figure 2.14: Action Notation

To begin executing, an action must know when to start and what its inputs are. These

conditions are called control and data, respectively. Figure 2.15 shows control and data

flow edges in UML2.0 directed towards an action. Data flow is distinguished from

control by small rectangles on the action to show the type of data flowing into the action.

These are called pins. An action may have sets of incoming and outgoing activity edges

that specify control flow and data flow from and to other nodes. An action will not begin

execution until all of its input conditions are satisfied. The completion of the execution of

an action may enable the execution of a set of successor nodes and actions that take their

inputs from the outputs of the action.

 Pin

Figure 2.15: Control and data flow into an action (taken from [5])

An action that has control and data outputs is notated in the same way as inputs, except

the flow arrows point in the other direction. An action terminates based on conditions

Chapter 2 Literature Review

- 19 -

internal to itself, but when the action does terminate, data is posted to its output pins, and

control values are placed on all its outgoing control flows. An action that has no control

or data outputs can still terminate, but its termination cannot cause other actions to start

[3].

Figure 2.16: Control and Data Flow out of an Action (taken from [5])

2.4.2 Control Nodes
There are seven kinds of control node, with five notations, as shown in Figure 2.15.

Contrary to the name, control nodes route both control and data/object flow.

Figure 2.17: Control Nodes (taken from [6])

Each of these items is described briefly below.

2.4.2.1 Initial Node
Initial nodes are used to show the start of an activity. They receive control when an

activity is started and pass it immediately along their outgoing edges. No other behavior

is associated with initial nodes in UML. Initial nodes cannot have edges coming into

them. An activity can contain more than one initial node. If an initial node has more than

one outgoing edge, only one of the edges will receive control, because initial nodes

cannot copy tokens [26].

Chapter 2 Literature Review

- 20 -

Figure 2.18: Initial Node (taken from [6])

 2.4.2.2 Decision Node

 Decision nodes guide flow in one direction or another, but exactly which direction is

determined by the constraints over the edges coming out of the node. Usually edges from

decision nodes have guards, which are Boolean value specifications evaluated at runtime

to determine if control and data can pass along the edge [4]. The guards are evaluated for

each individual control and data token arriving at the decision node to determine exactly

one edge the token will traverse. Decision node has one incoming edge and multiple

outgoing edges.

Figure 2.19: Decision Node (taken from [6])

2.4.2.3 Merge Node

Merge nodes are used to bring together multiple flows. All control and data arriving at a

merge node are immediately passed to the edge coming out of the merge. Merge nodes

have the same notation as decision nodes, but merges have multiple edges coming in and

one going out.

Chapter 2 Literature Review

- 21 -

Figure 2.20: Merge Node with Alternate Flows (taken from [6])

2.4.2.4 Fork Node

Fork node is used to split a flow into multiple concurrent flows. Data and control tokens

arriving at a fork are duplicated and sent to the outgoing edges. There is no other

behavior associated with fork nodes. In UML 2.0 it is not necessary to synchronize the

behavior on concurrent flows which was required in UML 1.x activities. [4]. A fork node

has one incoming edge and multiple outgoing edges.

Figure 2.21: Fork Node (taken from [6])

2.4.2.5 Join Node

Join node is used to synchronize multiple flows. Control or data must be available on

every incoming edge so that it can be passed to the outgoing edge. Join nodes have the

same notation as fork nodes, but joins have multiple edges coming in and one going out.

Flows coming into a join are usually concurrent flows from an upstream fork. Join nodes

take one token from each of the incoming edges and combine them according to these

rules:

1. If all the incoming tokens are control, then these are combined into a single

control token for the outgoing edge [6].

Chapter 2 Literature Review

- 22 -

2. If some of the incoming tokens are control and others are data, then these are

combined to provide only the data tokens to the outgoing edge. The control

tokens are destroyed [6].

Figure 2.22: Join Node (taken from [6])

2.4.2.6 Final Node

Flow in an activity ends at final nodes. There are two kinds of final nodes in UML2.0

activity diagrams

a) Flow Final: Each flow can have its own flow final. Final nodes cannot have outgoing

edges so there is no downstream effect of tokens going into a node, which are simply

destroyed. Activities terminate when all tokens in the graph are destroyed, so the activity

shown in Figure 2.21 will terminate when both flows reach the flow final.

Figure 2.23: Flow Final Node (taken from [6])

Chapter 2 Literature Review

- 23 -

b) Activity Final: nodes are like flow final nodes, except that control or data arriving at

them immediately terminates the entire activity. This makes a difference if more than one

control or data token might be flowing in the graph at the time the activity final is

reached.

Figure 2.24: Activity Final Node (taken from [6])

There may be several final nodes in an activity.

2.4.3 Activity Edge
There are two kinds of activity edges in UML2.0

a) Control Flow Edge: A control flow is an activity edge that only passes control

tokens. Tokens offered by the source node are all offered to the target node.

b) Object Flow Edge: An object flow is an activity edge that can have objects or data

passing along it.

An activity edge is notated by a stick-arrowhead line connecting two activity nodes. If the

edge has a name it is notated near the arrow [26].

Figure 2.25: Activity edge

Chapter 2 Literature Review

- 24 -

2.4.4 Object Nodes
There are four kinds of object node in UML2.0 activity diagrams, as shown in Figure

2.26. All object nodes specify the type of value they can hold and if no type is specified,

they can hold values of any type. Object nodes can hold more than one value at a time,

and some of these values can be the same. Each object node specifies the maximum

number of tokens it can hold, including any duplicate values, which is called the upper

bound.

Figure 2.26: Object Nodes (taken from [7])

2.4.4.1 Activity Parameter Node

Activity parameters are for accepting inputs to an activity and providing outputs from it.

Activity parameter nodes must have either no incoming edges or no outgoing edges.

When an activity in invoked, the inputs values are placed as tokens on the input activity

parameter nodes. When the activity has finished the outputs of the activity must flow to

output activity parameter nodes.

Figure 2.27: Activity Parameter Nodes (taken from [7])

Chapter 2 Literature Review

- 25 -

2.4.4.2 Pins

Pins provide values to actions and accept result values from them and are connected as

inputs and outputs to actions. An example of input pins is shown in Figure 2.28, in two of

the notational forms. Whichever input value reaches a pin first is held there until the other

arrives. When both pins have a value, the values are passed into the action and it starts.

Figure 2.28: Input Pins (taken from [7])

A special kind of input pin called a value pin is defined for providing constant values

such as numbers, or values.

Pins can be notated with the effect that their actions have on objects that move through

the pin. Effect is one of the four values CREATE, READ, UPDATE, or DELETE.

Figure 2.29: Pins showing effect of actions on objects (taken from [7])

A parameter node or pin may have multiple edges coming out of it, whereupon there will

be competition for its tokens, because object nodes cannot duplicate tokens like forks.

For example, Figure 2.30 shows parts being made, then painted at one of two stations, but

not both.

Chapter 2 Literature Review

- 26 -

Figure 2.30: Token Competition (taken from [7])

2.4.4.3 Central Buffer

Central buffers are for situations where tokens under competition arrive from multiple

sources [5]. For example, Figure 2.31 shows parts arriving at a central buffer from two

factories, which are then painted at two other factories. Pins cannot be used as central

buffers, because pins have flows coming or going out, but not both.

Figure 2.31: Central Buffer (taken from [7])

2.4.4.4 Data Store

A data store node is for non-transient information. UML2.0 data store nodes are an

attempt to support the earlier form of data flow and storage by providing a non-depleting

specialization of object node. Tokens flowing out of data store nodes are copies of tokens

that remain in the data store node. Tokens in a data store node cannot be removed, though

values do not remain in the store after the containing activity is terminated, and a token

arriving at a store that already has another token for the same object replaces that token.

Figure 2.32: Data Store Node (taken from [7])

Chapter 2 Literature Review

- 27 -

2.4.5 Partitions
Partitions are used to indicate what or who is responsible for actions grouped by the

partition. The term responsible has a wide variety of a meaning, but the one defined by

UML is that software class/component supports the behavior invoked by actions in the

partition. Partitions often correspond to organizational units in a business model. An

activity diagram may be divided visually into Partitions each separated from neighboring

Partitions by vertical solid lines on both sides. Partitions do not have execution

semantics. Partitions do not affect the token flow of the model. In UML2.0 the partitions

can be hierarchical.

Figure 2.33: Partition Example, Swimlane Notation (taken from [8])

2.4.6 Usage of Activity Diagrams
Like any other diagrams in UML, activity diagrams have also strengths and weaknesses.

The strength of activity diagrams lies on their ability to support parallel behavior, but

their great disadvantage is that they do not make clear the links between actions and

components, which are visualized better using interaction diagrams or state diagrams.

However they are suitable mostly when we deal with the following situations:

Chapter 2 Literature Review

- 28 -

2.4.6.1 Modeling an operation

Activity diagrams can be used to model an operation associated with a use case or a class.

In this case we are only interested in understanding what actions need to take place and

what the behavioral dependencies are. Using an activity diagram to model an operation is

simply like using it as a flowchart that supports concurrencies among threads in an

operation.

2.4.6.2 Modeling a workflow

Activity diagrams are best suited to model workflows across use cases that involve many

actors or business organizations. In this case we focus on activities as seen by the actors

that collaborate with the system.

2.5 Petri Nets

2.5.1 Definition
Petri net is a graphical and mathematical modeling and analysis language which consists

of places, transitions, and arcs. They were introduced by Carl Adam Petri in 1962 at the

Technische University Darmstadt, Germany.

Transitions are active components. They model activities which can occur, thus changing

the state of the system. Transitions are only allowed to fire if they are enabled, which

means that all the preconditions for the activity have been fulfilled.

Places are place holders for tokens. The current state of the system being modeled is

called marking which is given by the number and type (if the tokens are distinguishable

by type) of tokens in each place [16].

Arcs are of two types: input and output. Input arcs start from a places and ends at a

transitions, while output arcs start at a transition and end at a place.

When the transition fires, it removes tokens from its input places and adds some at all of

its output places. The number of tokens removed / added depends on the cardinality of

each arc. The interactive firing of transitions in subsequent markings is called token

Chapter 2 Literature Review

- 29 -

game. Figure 2.34 shows firing of an enabled transition. Transition t removes two token

from place H2 and one token from place O2 and generate two H2O tokens,

2H2 + O2 → 2H2O

H2

O2

H2O

t

2

2

H2

O2

H2O

t

2

2

Figure 2.34: Firing example

Petri nets are a formal language for describing and studying systems that are

characterized as concurrent, asynchronous, distributed, parallel, nondeterministic, and/or

stochastic. As a graphical tool, Petri nets can be used as a visual communication aid

similar to flow charts, block diagrams, etc. In addition, tokens are used in these nets to

simulate the dynamic and concurrent activities of systems. The use of Petri Nets leads to

a mathematical description of the system structure that can then be investigated

analytically. It is possible to set up state equations, algebraic equations, and other

mathematical models governing the behavior of systems. Timed Petri nets can be used for

studying the performance and dependability issues of systems. Petri nets can be used for

analyzing properties like reachability, boundedness, liveness, persistence, fairness etc

[34].

Chapter 2 Literature Review

- 30 -

2.5.2 Petri Net Metamodel
A simple Petri net is a set of places and transitions interconnected by directed arcs (an arc

goes from a place to a transition or from a transition to a place). These concepts like Petri

Net, Place, Transition and Arc have been used to define a Petri Net metamodel.

A Petri Net is composed of Transition, Place, input and output arcs. Places can be

interface places or internal places of a Petri Net. The interface places are for Starting and

Ending a Petri Net. If a Transition represents a complex operation and needs to be

represented with more details, it can be represented as a Petri Net.

Figure 2.35: Petri Net metamodel

Petri Net

Transition Input Arc place Output Arc

Interface

Portname:
Internal

 1 0..n

0..n

0..n
0..n

1

 1

 1

 1

 1

 1

1..n

1..n
1..n

1..n

1

Has Places

From Transition

From Place

To Transition

 To Place

Has Input Arcs
Has Output Arcs

Composed Of

Refined

 1

Refined As

End

Portname:

Start

Portname:

Input Arc of
Refined Transition

Portname:

Output Arc of
Refined Transition

Portname:

Chapter 2 Literature Review

- 31 -

2.5.3 Colored Petri Nets
Colored Petri Nets (CPN) is a modeling language for design, specification, simulation

and verification of systems. CPN combine the strengths of ordinary Petri nets with the

strengths of a high-level programming language. Ordinary Petri nets provide the

primitives for process interaction, while the programming language provides the

primitives for the definition of data types and the manipulations of data values. Colored

Petri Nets is a combination of Place/Transition Nets and Programming Languages.

In colored Petri Nets concurrency, control structures, synchronization, communication,

and resource sharing between processes are described by means of Ordinary Petri Nets

and data types and data manipulations are described by means of the functional

programming language Standard ML.

CPN offer hierarchical descriptions, so large nets can be constructed by relating smaller

CPN to each other, in a well-defined way. The hierarchy constructs of CPN play a role

similar to that of subroutines, procedures and modules of programming languages. The

existence of hierarchical CPN makes it possible to model large systems in a manageable

and modular way.

A CPN model consists of a set of modules (pages) which each contain a network of

places, transitions and arcs. The modules interact with each other through a set of well-

defined interfaces, in a similar way as known from many modern programming

languages. The graphical representation makes it easy to see the basic structure of a

complex CPN model, i.e., understand how the individual processes interact with each

other.

They also have a formal, mathematical representation with a well-defined syntax and

semantics. This representation is the foundation for the definition of the different

behavioral properties and the analysis methods.

Models with CPN can be made with or without explicit reference to time. Untimed CPN

models are usually used to validate the functional/logical correctness of a system, while

timed CPN models are used to evaluate the performance of the system. There are many

Chapter 2 Literature Review

- 32 -

other languages which can be used to investigate the functional/logical correctness of a

system or the performance of it. However, CPN is the only modeling language that is

well-suited for both kinds of analysis.

Models can be simulated interactively or automatically with CPN. In an interactive

simulation the user is in control. It is possible to see the effects of the individual steps

directly on the graphical representation of the CPN. This means that the user can

investigate the different states and choose between the enabled transitions. Automatic

simulations are similar to program executions and the purpose is to be able to execute the

CPN models as fast and efficient as possible, without detailed human interaction and

inspection.

CPN also offers more formal verification methods, known as state space analysis and

invariant analysis. In this way it is possible to prove, in the mathematical sense of the

word, that a system has a certain set of behavioral properties. However, industrial

systems are often so complex that it is impossible or at least very expensive to make a

full proof of system correctness. The use of formal verification is often restricted to the

most important subsystems or the most important aspects of a complex system.

Colored Petri Nets, as any description language with formal semantics, are used for three

different but closely related purposes.

1) CPN model is a description of the modeled system, and it can be used as a

specification (of a system to be built) or as a presentation (of a system to be

explained to other people, or ourselves). By creating a model we can investigate a

new system before we construct it. This is an obvious advantage, in particular for

systems where design errors may jeopardize security or be expensive to correct.

2) The behavior of a CPN model can be analyzed, either by means of simulation

(which is equivalent to program execution and program debugging) or by means

of formal analysis methods (which are equivalent to program verification).

3) It should be understood that the process of creating the description and

performing the analysis usually gives the modeler a dramatically improved

Chapter 2 Literature Review

- 33 -

understanding of the modeled system - and it is often the case that this is more

useful than the description and the analysis results themselves.

2.5.4 CPN Tools
A toolbox called “CPN Tools” has been developed at the Department of Computer

Science, University of Aarhus, for editing, simulating, and analyzing Colored Petri Nets.

Typical examples of application areas are communication protocols, distributed systems,

automated production systems, work flow analysis and VLSI chips [19] [21].

“CPN Tools” is a major redesign of the “Design CPN” tool for editing, simulation and

state space analysis of Colored Petri Nets. The new graphical interface is based on

advanced interaction techniques, including bi-manual interaction, toolglasses and

marking menus and a new metaphor for managing the workspace. The tool features

incremental syntax checking and code generation which take place while a net is being

constructed. A fast simulator efficiently handles both untimed and timed nets. Full and

partial state spaces can be generated and analyzed, and a standard state space report

contains information such as boundedness and liveness properties. CPN Tools requires an

OpenGL graphics accelerator and will run on all major platforms (Windows, Unix/Linux,

and MacOS).

2.6 Work on Activity Diagrams into Petri Nets

As already described in Section 2.2, Activity Diagram is one of the behavioral diagrams

in UML; which is a semi formal language for capturing different aspects and views of the

system. Activity Diagrams are widely used in the software development process for

modeling the dynamic aspects of the system.

Activity Diagram UML 2.0 is a complete rewrite of Activity Diagram UML 1.5, and

many new concepts like data flow, exception handling, flow final, pins, datastore etc.

have been introduced in the Activity Diagrams UML 2.0.

Many formal semantics for validation of activity models like Abstract State Machine

semantics, Finite State Processes semantics and Petri Net semantics [35][20] have been

Chapter 2 Literature Review

- 34 -

proposed. The Petri Net semantics defined by [35] [20] are based on UML 1.5 and cover

aspects of control flow, concurrency and procedure call. The concepts of dataflow, object

nodes and exception handling are not covered by [35] [20]. Also [35] and [20] discuss the

transformations only at the conceptual level and propose manual translations from

Activity Diagrams to Petri Nets.

The Object Management Group has defined an XML-based Metadata Interchange format

(XMI) [28] which can be used as a model interchange format for UML. This allows UML

modeling tools from different vendors to use XMI to exchange UML models. XMI can

also be used to describe model transformations. For example if a UML model is to be

transformed into a Petri Net model (which has a defined XML format); XMI can be used

for this purpose. In this thesis we have introduced an algorithm for automatic

transformation of Activity Diagrams to Petri Nets.

2.7 Extensible Markup Language, Document Type Definition,
XML Schema, Document Object Model, XSLT

2.7.1 XML
XML (eXtensible Markup Language) is a simplified subset of SGML (Standard

Generalized Markup Language) that maintains the features of validation, structure, and

extensibility. Like SGML, XML is a metalanguage for describing the markup of different

types of documents; however, XML's standardized text format was designed specifically

for transmitting structured data to Web applications. But now it is also widely used for

other applications. In addition, XML is easier to learn, use, and implement than full

SGML. XML's development is guided by a working group of the W3C [36], and version

1.1 of the specification went to Recommendation status on 4th February 2004.

The XML specification describes XML documents, a class of data objects and partially

describes the behavior of XML processor programs used to read such documents and

provide access to their content and structure [33]. XML documents are composed of

entities, which are storage units containing text and/or binary data. Text is composed of

Chapter 2 Literature Review

- 35 -

character streams that form both the document character data and the document markup.

Markups describe the document's storage layout and logical structure. A well-formed

XML document is unambiguous, so that a browser or editor can read the tags and create a

tree of the hierarchical structure without having to read its Document Type Definition.

XML provides a standard way for information providers to add custom markup to

information-rich documents, so that complex documents can be rendered and published

in a dynamic way.

W3C has recommended two specifications for defining the structure of XML documents

• Document Type Definition (DTDs)

• XML Schema Definition (XSD: discussed after DTD)

2.7.2 Document Type Definition
DTD is a set of rules about the structure of related XML documents. It defines the

document structure with a list of legal elements. A DTD can be declared inline to XML

document, or as an external reference. An XML document is said to be valid if it has an

associated document type definition and if the document complies with the constraints

expressed in it. A DTD can be used by independent groups of people who agree to use a

common DTD for interchanging data. Applications can use a standard DTD to verify that

data being received from the outside world is valid in respect to this DTD.

Let us consider the following example of a XML document with root element note. The

note contains to for defining to whom this is being sent, from for defining who is sending

it, heading for defining heading of note and body for defining body of note, with body

having one paragraph.

 <?xml version="1.0"?>

 <!DOCTYPE note SYSTEM

 "note.dtd">

 <note>

 <to>Tove</to>

Chapter 2 Literature Review

- 36 -

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>

 <paragraph>Don't forget me this weekend.</paragraph>

 </body>

 </note>

 The structure of such a note can be described by the following DTD

 <?xml version="1.0"?>

 <!DOCTYPE note [

 <!ELEMENT note (to,from,heading,body)>

 <!ELEMENT to (#PCDATA)>

 <!ELEMENT from (#PCDATA)>

 <!ELEMENT heading (#PCDATA)>

 <!ELEMENT body (paragraph+)>

 <!ELEMENT paragraph (#PCDATA)>

]>

Some elements contain other elements e.g. element note contains to, from, heading and

body elements and body contains one or more paragraph. Other elements contain data in

the form of text e.g. elements to, from, heading and paragraph contains #PCDATA

(#PCDATA refers to parsed character data).

A DTD sets out a clear set of rules that allow documents to be validated. According to the

above DTD, the document given as example, and any other that follows these rules, is a

document of type known as Note.

The information provided by the DTD is called metadata and can be used to suggest how

the document should be formatted for display or stored in a database. It also allows the

data to be manipulated; a summary of the article could be produced by presenting only

the note and heading elements. A more sophisticated DTD could allow the document to

be easily searched or indexed. Because XML is a non-proprietary standard the

Chapter 2 Literature Review

- 37 -

opportunity exists for varied applications to create and share documents without prior

knowledge of their intended target.

2.7.3 XML Schema
Like a DTD, a XML Schema defines the structure of XML documents or data. A

document which is compliant to the schema is called an instance document. A schema

defines the way in which elements and attributes can be represented in a XML document.

It also dictates that the given XML document should be of a specific format and specific

data type. Major advantages of XML schema over DTD are the following:

 Unlike DTDs, XML Schema is an XML document so there is no real need to

learn any new syntax.

 XML Schema supports Inheritance, where one schema can inherit from

another schema. This is a great feature because it provides the opportunity for

reusability.

 XML Schema provides the ability to define own data type from the existing

data type.

 XML Schema provides the ability to specify data types for both elements and

attributes.

The note example already discussed in the Section 2.7.2 can be represented in the XML

schema format as shown below

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3schools.com"

xmlns="http://www.w3schools.com"

>

<xsd:element name="note">

 <xsd:complexType>

 <xsd:sequence>

Chapter 2 Literature Review

- 38 -

 <xsd:element name="to" type="xsd:string"/>

 <xsd:element name="from" type="xsd:string"/>

 <xsd:element name="heading" type="xsd:string"/>

 <xsd:element name="body" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="paragraph" type="xsd:string" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

Explanation of important elements

For an XML Schema, the root element is always <schema>. The XSD namespace

declaration is provided with the <schema > to tell the XML parser that it is an XML

Schema.

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" indicates that the elements

and data types used in the schema (schema, element, complexType, sequence,

string, etc.) come from the "http://www.w3.org/2001/XMLSchema" namespace. It

also specifies that the elements and data types that come from the

"http://www.w3.org/2001/XMLSchema" namespace should be prefixed with xsd:.

 targetNamespace="http://www.w3schools.com" indicates that the elements

defined by this schema (note, to, from, heading, body, paragraph.) belong to the

"http://www.w3schools.com" namespace.

 xmlns="http://www.w3schools.com" indicates that the default namespace is

"http://www.w3schools.com".

Chapter 2 Literature Review

- 39 -

An element declaration in XML Schema should have the name, type, minoccurs,

maxoccurs attributes. An element can be of the following two types:

 Simple Type

 Complex Type

XML Schema provides a wide variety of base data types that can be used in a schema.

Examples of base data types are xsd:string, xsd:int etc. An element is said to be of Simple

Type if user defined data type is created from the base data types. If an element contains

one or more child elements or if an element contains attributes, then the element is

defined as Complex Type.

2.7.4 DOM
The W3C Document Object Model (DOM) is a platform and language-neutral interface

that allow programs and scripts to dynamically access and update the content, structure

and style of documents. A DOM document is a collection of nodes, or pieces of

information, organized in a tree based hierarchy. This hierarchy allows a developer to

navigate around the tree looking for specific information.

Analyzing the structure of a document requires the entire document and its hierarchy to

be loaded into memory before any other processing is done. For exceptionally large

documents, parsing and loading the entire document can be slow and resource intensive,

so there are other means for dealing with such data. The event-based models, such as the

Simple API for XML (SAX), work on a stream of data, processing it as it goes by. An

event-based API eliminates the need to build the data tree in memory, but it does not

allow a developer to actually change the data in the original document. The DOM, on the

other hand, also provides an API that allows a developer to add, edit, move, or remove

nodes at any point on the tree in order to create an application.

Working with the DOM involves several concepts that all fit together. A parser is a

software application that is designed to analyze a document, in this case an XML file and

Chapter 2 Literature Review

- 40 -

do something specific with the information. In DOM, the parser builds the data tree in

memory. The complete working is shown in Figure 2.36.

Figure 2.36: DOM Working [25]

DOM Level 1 API: The DOM Level 1 API was completed in 1998 and contains

interfaces that represent all of the different types of information that can be found in an

XML document, such as elements and text. It also includes the methods and properties

necessary to work with these objects. Level 1 included support for XML 1.0 and HTML,

with each HTML element represented as an interface. It included methods for adding,

editing, moving, and reading the information contained in nodes.

DOM Level 2 API: Namespace support was added to the DOM Level 2. Level 2

extends Level 1, allowing developers to detect and use the namespace information that

Chapter 2 Literature Review

- 41 -

might be applicable for a node. Level 2 also adds several new modules supporting

Cascading Style Sheets, events, and enhanced tree manipulations.

DOM Level 3 API: It is the latest version of W3C Recommendations and adds enhanced

namespace support, including two new recommendations, XML Infoset and XML Base;

extended support for user interface events and support for DTD; XML Schema loading

and saving abilities; and other features. Notably, it also adds support for XPath, the

means used in XSL Transformations to locate specific nodes.

A DOM document is a tree structure, where each node represents one of the components

(elements, their text, and their attributes are all known as nodes) from an XML document.

All elements, their containing text and their attributes, can be accessed and manipulated

through the DOM tree. However, the DOM standard is silent on the subject of how to

create a DOM from an existing XML file. This problem is solved by many vendors and

open source communities like Sun, Apache etc. We decided to use the API implemented

by Sun which is a set of APIs to access and manipulate nodes in the DOM tree. It uses

DocumentBuilderFactory and DocumentBuilder classes to parse an XML document and

create a DOM tree from it. The graphical view is shown in the figure below.

Figure 2.37: High level view of creating a DOM tree from XML documents

Chapter 2 Literature Review

- 42 -

When the input file is parsed, the DocumentBuilder will return an

org.w3c.dom.Document object.

DocumentBuilder builder =
DocumentBuilderFactory.newInstance().newDocumentBuilder();
Document document = builder.parse(input file);

2.7.5 Extensible Stylesheet Language
XSL Transformations (XSLT) is a language for describing a scheme for converting XML

documents into another format. An XSLT processor applies the rules from the XSLT

style sheet to the XML document to create a new, third document in XHTML, WML,

SVG, or almost any other XML format. Multiple XSLT files can translate a single XML

document into multiple formats.

Figure 2.38: Transformation of XML document using XSLT

As a language, XSLT is best at manipulating the structure of the information as distinct

from its content (data), e.g. string handling is much more laborious as compared with

other programming language like Java. Also, for data conversion applications, XSLT

processors hold all the data in memory while the transformation is taking place. The tree

structure in memory can be as large as ten times the original data size, so a complex

conversion can be quite time consuming.

Chapter 2 Literature Review

- 43 -

Although XSLT can be used for manipulating complex data but it was designed mainly

for the purpose of publishing. The most commonly used publishing method used today is

World Wide Web and converting XML to HTML is the most common application for

XSLT. Many XSL processors are available for use, but the most popular are Saxon and

Xalan.

2.7.6 The Xerces XML Parser
Xerces is an open source XML parser developed by Apache. It can be used for parsing,

validating and processing XML document using the Simple API for XML (SAX) or the

Document Object Model (DOM) API. It is available in Java and C++ and is fully XML

Schema-compliant since Xerces version 1.1.3.

Apache has developed two different parsers: Xerces Java 1 and Xerces Java 2. Xerces2 is

a complete rewrite of the existing version 1. Xerces2 has a custom Xerces Native

Interface (XNI), and its source code is said to be much cleaner, more modular, and easier

to maintain than Xerces1. Xerces2 also implements the latest W3C XML Schema

standards.

2.8 Chapter Summary

This chapter covers the background information that will be used throughout this thesis.

The transformation from UML Activity Diagram notation and CSM to Petri Net, involves

many popular specifications, notations, and languages.

Section 2.1 recalls the basic elements of the UCM notation. Section 2.2 introduces

different UML diagrams and UML metamodel. Section 2.3 throws some light on the

Model Driven Architecture and its advantages. Section 2.4 is an introduction to UML

Activity Diagrams and various notations used in it. Section 2.5 discusses Petri Nets and

its advantages. Section 2.6 discusses the work already done on translation of Activity

Diagrams to Petri Nets. Section 2.7 provides a brief introduction to the Extensible

Markup Language (XML), Document Type Definition (DTD), XML Schema, Extensible

Style Sheet Language (XSLT) and the Document Object Model (DOM). The knowledge

Chapter 2 Literature Review

- 44 -

about UCM, Activity Diagrams and Petri Nets, provides us the foundation to build CSM

meta-model.

With the above background information, we are ready to compare different design

notations, extract common properties, and finally explain the meta-model for the Core

Scenario Model (CSM).

Chapter 3 Core Scenario Model

- 45 -

Chapter 3 Core Scenario Model (CSM)
The Core Scenario Model (CSM) developed under the projects “Requirement-Driven

Development of Distributed Applications” (RDA) and “Performance by Unified Model

Analysis” (PUMA) will play an important part in deriving various functional and

performance models from different design models. This chapter presents the motivations

behind the CSM model, the definition of the CSM, and the benefits of using the CSM

model in the transformation processes.

3.1 Overview

The use of formal methods in achieving correct software is absolutely necessary. With

the use of formal methods it can be proven that the software fulfil its requirements.

Formal specifications are unambiguous and analysable. However, formal methods are not

widely used in software development. In most cases, this is because they are not suitably

supported with development tools. Further, many software developers do not recognise

the need for rigour. Different formal languages like Petri Nets and Layered Queuing

Networks can be used for validating the software requirements.

Different methodologies for transforming software requirement to formal languages have

been proposed. Williams and Smith [13] proposed a transformation approach from UML

class diagrams, deployment diagrams, and sequence diagrams to Queuing Networks to

describe the software architecture and software behaviour. Petriu et al. [15] proposed

three pattern-based methodologies. They also specified the software architecture by using

UML class, deployment, sequence, activity, and use case diagrams.

The approaches mentioned above use different combinations of UML diagrams and the

UCM notation to describe software architectures and behaviours. Each approach

develops its own transformation tool to automate the transformation process. When users

use a specific transformation tool, theirs choices are limited to only one required specific

design specification and one specific functional/performance language. On the other

hand, the drawback of having many different transformation tools is the inconvenience

Chapter 3 Core Scenario Model

- 46 -

and uncertainty in choosing between different approaches. To use such a transformation

tool, the software developer has to know in advance what is the target performance

model, what is the input requirement, and so forth. Each transformation tool has its own

input/output limitations and requirements. When using another transformation tool,

software designers may have to change their software design models to meet the different

input requirements. This obviously delays the transformation process and functional and

performance evaluations.

At the same time, we can also see that all transformation processes have many common

properties. The transformation tools are based on the availability of suitable abstraction

of the final software system. As already discussed in Chapter 1, scenarios are generally

used to describe software behaviours at the requirements level. Almost all the approaches

mentioned above start from UML activity diagrams, UML sequence diagrams, or Use

Case Maps. All these three design notations have common concepts. This provides us

with a possibility to consolidate all the different transformation processes and get a

unified approach.

Recently, Woodside et al. proposed an approach [14] to integrate early functional and

performance analysis with software development life cycle. The main concept is a Core

Scenario Model, which acts like a standard interface between different software

specifications and different functional and performance models.

The major benefit of using the CSM is the separation of concern. The CSM acts as a

unified intermediate interface for functional and performance models. It provides an entry

point to different types of functional and performance models. Having an intermediate

CSM representation can reduce the number of transformation tools needed. Suppose there

are N1 different kinds of scenario design models to be transformed into N2 kinds of

functional/performance models one by one, then we need N1 * N2 transformation tools to

be developed. On the other hand, if we make use of the CSM, then we need N1

transformations between scenario design models and CSM, and N2 transformations

Chapter 3 Core Scenario Model

- 47 -

between CSM and functional or performance models. The total number of transformation

tools needed becomes N1+N2.

Figure 3.1: Transformations without Core Scenario Model

Chapter 3 Core Scenario Model

- 48 -

Activity
Diagrams

Message
Sequence

Charts

Use Case
Maps

Sequence
Diagrams

Layered
Quuing
Network

Petri Nets

Colored Petri
Nets

NI N2+

Core
Scenario

Model

Figure 3.2: Transformations with Core Scenario Model

3.2 Comparison of UCM and UML Activity Diagrams

In order to provide a unified interface to different formal modeling languages, CSM

should encompass the common properties among UML and UCM in order to allow

different combinations of design specifications as inputs. Therefore, we first need to find

out what are the common properties among different design notations. In the table below

we compare the common properties among UCMs and UML activity diagrams.

Concept UCM Activity Diagram CSM

1. Scenario

representation

Path (scenario):

A possible sequence of

execution of actions;

path chains

responsibilities in a

cause-effect sequence.

Activity:

The flow of execution is

modeled as activity nodes

connected by activity

edges

Scenario

2. Entities Component: Swimlane / Partition: Component

Chapter 3 Core Scenario Model

- 49 -

Concept UCM Activity Diagram CSM

Components indicate

who is responsible for

responsibilities.

Partitions indicate who is

responsible for actions.

3.Function and

action performed

Responsibility:

Responsibilities are

processing tasks (e.g.

procedures, functions,

actions, etc.) that are

referenced by scenarios

and by components

 Action:

An action is the

fundamental unit of

executable functionality,

and an action represents a

single step within an

activity; activity is a

grouping of actions, and

an activity represents a

behaviour which is

composed of actions.

Step

4. Scenario start

and stop

Start point & end

point:

Indicate the start and

end of a UCM.

Initial Node & Final

Node (Flow Final):

Indicate the start and end

of flow.

Start & End

5. Sub-scenario Stub:

Container for plug-in

maps

Sub activity:

Call behaviour action

references an activity

definition, in which case

the execution of call

action involves the

execution of referenced

activity and its actions.

Refinement

6. Concurrency

flow

And Fork:

An AND fork splits a

path into two or more

concurrent segments

Fork Node:

A fork node splits a flow

into multiple concurrent

flows.

Fork

Chapter 3 Core Scenario Model

- 50 -

Concept UCM Activity Diagram CSM

7. Alternative

flow

Or Fork:

An OR fork splits a path

into two (or more)

alternatives.

Decision Node:

A decision node has one

incoming edge and

multiple outgoing activity

edges, and token can

transverse only one

outgoing edge.

Branch

8. Sequence flow Causal path sequence: ActivityEdge:

There are two kinds of

activity edges. 1) Control

flow to model the

sequencing of behaviours

that does not involve the

flow of objects.

2) Object flow to model

the flow of data and

objects in an activity

Sequence

9.Alternative

merge

Or Join:

An OR join merges two

or more overlapping

paths

Merge Node:

A merge node brings

together multiple

alternate flows.

Merge

10.Synchronizing

concurrent flow

And Join:

An AND join

synchronizes two or

more paths together.

Join Node:

A join node synchronizes

multiple flows, and has

multiple incoming edges

and one outgoing edge.

Join

TABLE 3.1 Concept comparison of UCM and UML Activity Diagrams

Chapter 3 Core Scenario Model

- 51 -

The properties discussed above were used to determine what concepts are necessary to be

supported by CSM. The concepts shown for Activity Diagrams and UCM’s have been

taken from UML Activity Diagrams and UCM metamodels [26] [37]. In the last column

of the table 3.1 we have also shown the name of the corresponding concepts defined for

CSM metamodel. Properties of UML Sequence Diagrams have also been kept in mind

while designing CSM metamodel and Toqueer Israr from Carleton University worked on

that part [32]. Detailed description of the CSM metamodel is given in Section 3.3.

3.3 Definition of the CSM

A metamodel for CSM has been designed by a team of people from Carleton University

and University of Ottawa. The CSM metamodel captures the essential entities in the

domain model which are required for building functional and performance models, and it

makes explicit some facts which have to be inferred from UCM, UML and

Schedulability, Performance, and Time (SPT) Profile data [14].

The CSM metamodel development went through many phases. Initially CSM was

designed keeping in view only the performance aspects of the system and it was decided

that the metamodel should consist of only two packages namely CSMMETA and

XSD_Datatypes. CSMMETA was used for defining different classes for constructing a

CSM and XSD_Datatypes to be used for defining various data types. Figure 4.3 and 4.4

show the details of the initially proposed metamodel [24].

The proposed CSM provides explicit representation of the scenario flow in a

PathConnection type [14]. The Profile depends on a simple successor association

between Steps (Actions in UML2.0). Here, there is a PathConnection object between

each pair of Steps, with subtypes which correspond to the sequential relationship types

common in path models for real-time software: Sequence for simple sequence, one step

after another; Branch for an OR-fork with Merge for an OR-join, to describe alternative

paths, and Fork and Join for describing parallel paths.

Chapter 3 Core Scenario Model

- 52 -

Each PathConnection subtype takes a different number of source steps, and successor

steps, and these are labeled with the subtypes in the diagram. For example, a Sequence

has exactly one source and one target Step, while a Fork or Branch has one source Step

and multiple target Steps.

Active and passive resources represent the resources defined in the SPT Profile [27].

Active resources include devices (Processing Resources) and subsystems (captured by a

placeholder called External Service). The latter are service operations executed by some

resource outside the design document. Passive resources include operating system

processes (or threads) identified as Components, and hosted by Processing Resources.

In the initially proposed metamodel the Start and End of a Scenario were proposed to be

Steps which in our opinion was not inline with the UML Semantics, where Start (Initial

Node in Activity Diagrams) and End (Final Node in Activity Diagrams) points are simply

used for forwarding or destroying tokens and are described as Control nodes. So we

proposed that the Start and End points should be PathConnections in the CSM

metamodel. This proposal was discussed in the group meeting and was approved.

CSMMETA
<<XSDschema>> XSD_Datatypes

Figure 3.3: Package diagram

Chapter 3 Core Scenario Model

- 53 -

PassiveResource

OpenWorkloadMsgType
async : string
sync : string
reply : string

<<enumeration>>

End
type : string

ClosedWorkload
population : int

ArrivalType
none : string
deterministic : string
erlang : string
exponential : string
uniform : string

<<enumeration>>

ActiveResource
op_time : double

Sequence Merge

WorkLoad
id : ID
src_ref[0..1] : string
resp_time[0..1] : string
conf_interval[0..1] : double
arr_dist[0..1] : ArrivalType = none
delay[0..1] : double
value[0..1] : double
low[0..1] : double
high[0..1] : double
coeff_var_sq[0..1] : double

PerfResult
id : ID
src_ref[0..1] : string
resp_time : double
utilization : double
throughput : double
conf_interval[0..1] : double
solver[0..1] : string
is_bottleneck : boolean

ResourceAcquire
r_units : double
priority : string

ResourceRelease
r_units : double

GeneralResource
id : ID
src_ref[0..1] : string
name[0..1] : string
multiplicity[0..1] : int
sched-policy[0..1] : string

0..*+perfresult 0..*

+acquire

+release

PerfResult

Constraint
name : string
value : string

CSM
id : ID
src_ref[0..1] : string
name[0..1] : string
description[0..1] : string
author[0..1] : string
created[0..1] : date
version[0..1] : string

1..*
+resource
1..*

Fork JoinBranch

ExternalService

ExternalOperation
demand : double

0..n

+extservice

0..n

Step

0..n
+extop

0..n

Start

+workload

AbstractStep
id : ID
src_ref[0..1] : string
name : string
description[0..1] : string
probability[0..1] : double
condition[0..1] : string
rep_count[0..1] : double

0..*

+perfresult

0..*

0..1
+postcondition

0..1

0..1+precondition0..1

*+model * Scenario

1..*
+root
1..*

0..*

0..1

+sub
0..*

+parent 0..1

PerfRequirement
id : ID
src_ref[0..1] : string
name[0..1] : string
resp_time : string
conf_interval[0..1] : double
start_before[0..1] : boolean
end_after[0..1] : boolean

0..n+perfreq 0..n

Message
id : ID
src_ref[0..1] : string
type : MsgType = async
size[0..1] : double
multi[0..1] : double

Condition
select : boolean

DataElm
ordering : string

ProcessingRe
source

Step

+end+start

PathConnection
id : ID
src_ref : string0..1

+pathconnection

+message

0..1

0..1

0..n

+predecessor
0..1

+target
0..n

0..1

0..n

+successor
0..1

+source
0..n

0..*1 0..*1

1..*

1

1..*

1

Component
is_active : boolean

0..n

0..1

+sub

0..n
+parent

0..1

+processingresource

0..*
+component
0..*

0..*

1..*

0..*

1..*

Figure 3.4: Initial CSMMETA Class diagram

Also the old version did not support completely the refinement of a Step (or action in

activity diagrams) which is an integral part of UML models for representing complex

scenarios. Although in the initial metamodel it was shown that a step can be represented

as a Scenario but it did not take care of how the inputs to a Step needing refinement and

Outputs generated by that Step will be mapped onto the Scenario. We proposed that

refinement should be added to CSM and after team discussion it was also approved.

Although it was possible to construct purely functional models from this version, one had

to go through all the classes to understand which are required for building the functional

model. After long discussions it was decided that the CSM metamodel should be defined

in such a manner that it will be easy to construct both a functional and a performance

Chapter 3 Core Scenario Model

- 54 -

models of a system. Based on our proposals the CSM metamodel was revised and is

shown in Figures 3.5, 3.6, 3.7 and 3.8. It has been proposed that the CSM should consist

of four packages and each package would lead to more detailed diagram. Figure 3.5 also

shows the dependencies of the packages. The XSD_Datatypes package defines the

primitive types, such as integer, double, string etc. It is a standard package, used for the

schema validation purpose.

CoreScenario XSD_Datatypes

Performance Functional

Figure 3.5: Package diagram for Core Scenario Model metamodel.

MsgKind
async : string
sync : string
reply : string

<<enumeration>>

Sequence MergeBranch

Message
kind[0..1] : MsgKind = async
size[0..1] : double
multi[0..1] : double

End

Start

OutBinding

0..*0..*

InBinding

0..*0..*

ResourceAcquire

r_units : double
priority : string

(from Performance)

ResourceRelease

r_units : double
(from Performance)

CSM
name[0..1] : string
description[0..1] : string
author[0..1] : string
created[0..1] : date
version[0..1] : string
traceability_link[0..1] : string

Refinement
selection_cond[0..1] : string1..*1..*

1..*1..*

Step
id : ID
name : string
description[0..1] : string
rep_count[0..1] : double
traceability_link[0..1]

0..*0..*

0..*0..*

0..*

1

0..*

+parent1

PathConnection
id : ID
name : string
traceability_link[0..1] : string

0..*

+out +sub_out

0..*

0..*

+in

+sub_in 0..*

1..*

0..*

+successor
1..*

+source 0..*

1..*

0..*

+predecessor
1..*

+target0..*

Classifier
id : ID
name : String
traceability_link[0..1] : String

0..*

0..*

0..*

0..*

Scenario
id : ID
name : string
description[0..1] : string
transaction : boolean
traceability_link[0..1] : string

0..*+scenario 0..*

0..*0..* 0..*

1

+refinement
0..*

+sub1

0..*

+sub

0..*

0..*0..*

ForkJoin

Figure 3.6: Class diagram for core package CSM metamodel.

Chapter 3 Core Scenario Model

- 55 -

Figure 3.6 shows the Classes which became part of the Core Package. The CoreScenario

package is the most important package in the CSM; it defines the basic elements used to

construct CSM models. Refinement class has been proposed in the Core Package for

refining the Steps that are represented as independent scenarios. Two more classes,

Inbinding and Outbinding, are defined for the inputs to such steps and outputs generated

by them. Detailed information about each class in this package can be found in Section

3.3.1.

ClosedWorkload
population : int

OpenWorkload

PassiveResource

ActiveResource
op_time[0..1] : double

ProcessingResource

Component
is_active_process : boolean0..n

0..1

+sub

0..n

+parent 0..1

+host

ExternalOperation
description : String

Start
(from CoreSc...)

ResourceAcquire
r_units : double
priority : string

PerfValue
value : String
kind[0..1] : PerfValueKind = mean
source[0..1] : PerfValueSource = required
percentile : String
kth_moment : String

Step

id : ID
name : string
description[0..1] : string
rep_count[0..1] : double
traceability_link[0..1]
host_Demand[o..1] : double
probability[0..1] : double

(from CoreScenar io)

0..*0..*

0..*

0..1

0..*

+component 0..1

0..*
+extop

0..*

Workload
id : ID
arrival_pattern : ArrivalProcess
arrival_param1 : double
arrival_param2 : double
external_delay[0..1] : double
value[0..1] : double
coeff_var_sq[0..1] : double
description[0..1] : String
traceability_link[0..1] : string

0..1

+workload

0..1

PerfMeasure
id : ID
name : String
traceability_link : String
measure : PerfAttribute = delay

0..*0..*

0..1

0..*

+end
0..1

+perfMeasureEnd
0..*

0..1

0..*

0..1

+perfMeasureTrigger
0..*

0..* 0..1

+respTime

0..*

+duration

0..1

CSM

name[0..1] : string
description[0..1] : string
author[0..1] : string
created[0..1] : date
version[0..1] : string
traceability_link[0..1] : string

(from CoreScenar io)

0..*0..*

ArrivalProcess
poissonPDF : string
periodic : string
uniform : string
phase_type : string

<<enumeration>>
PerfValueKind

mean : String
variance : String
percentile : String
moment : String
min : String
max : String
distribution : String

<<enumeration>>
PerfValueSource

required:String
assumed : String
predicted : String
measured : String

<<enumeration>>
PerfAttribute

delay : string
throughput : string
utilization : string
interval : string
wait : string

<<enumeration>>

ResourceRelease
r_units : double

0..*0..*

GeneralResource
id : ID
name[0..1] : string
multiplicity[0..1] : int
sched-policy[0..1] : string
traceability_link[0..1] : string

0..*

+acquire

0..*

0..1

0..*

+resource
0..1

0..*

0..*

+resource

0..*

0..*0..*

+release

Figure 3.7: Class diagram for performance package of CSM metamodel.

The Performance package collects all the elements related to performance information,

such as resource, performance requirement, performance result etc.

Chapter 3 Core Scenario Model

- 56 -

Constraint
expression : string

InputSet

PreCondition

0..1 +precondition0..1

PathConnection

id : ID
name : string
traceability_link[0..1] : string

(from CoreScenario)

1..*

0..*

+predecessorSubset
1..*

0..*

Step

id : ID
name : string
description[0..1] : string
rep_count[0..1] : double
traceability_link[0..1]
host_Demand[o..1] : double
probability[0..1] : double

(from CoreScenario)

0..*
1..*

+source0..* +successor
1..*

0..*

1..*

+target
0..*

+predecessor
1..*

0..*0..*

0..1

+precondition

0..1

PostCondition0..1

+postcondition

0..1

OutputSet

1..*

0..*

+successorSubset
1..*

0..*0..*0..*

0..1
+postcondition

0..1

Figure 3.8: Class diagram for functional package of CSM metamodel.

Figure 3.8 shows the Function package of CSM. The Function package adds information

about constraint and object flow. PreConditon and PostCondition classes have been

proposed for conditions which must be met, before a Step can start executing and after a

Step has executed, respectively. Input Set and Output Set classes have been proposed for

one or multiple input and output sets of a Step. These two classes have been proposed to

support alternative sets of inputs and outputs of a behavior, as introduced in UML 2.0

Activity Diagrams under the name ParameterSet. Detailed information about each class

in the function package can be found in the following section.

3.3.1 Class Description of CSM Core Package
Class description for the core, functional and some important classes of performance

packages is provided in the following sub sections.

3.3.1.1 CSM

Description: A Core Scenario Model (CSM) is the top-level element in a scenario, which

contains the core concepts from Use Case Maps (UCM) and UML 2.0 activity diagram

and sequence diagram. It is composed of scenario model(s), and a collection of

components, steps, path connections, resources etc.

Chapter 3 Core Scenario Model

- 57 -

Attributes

name: string [0..1] the model name

description: string [0..1] detail information of the model

author: string [0..1] the model author

created: date [0..1] the date of creation

version: string [0..1] version number

traceability_link: string [0..1] for describing connections between models

Associations

scenario: Scenario [0..*] scenario contained in the model

Constraints

 None

3.3.1.2 Scenario

Description: Scenarios are the basic elements of a CSM model. Scenarios are used to

define a behavior by specifying the elements that make up the scenario and the

connections between elements.

Attributes

id: ID the identity of the scenario

name: string the name of the scenario

description: string [0..1] the detail information of the scenario

transaction: boolean [0..1] indicates if scenario acts like a transaction

traceability_link: string [0..1] links to the original model

Associations

sub: Step [0..*] a collection of step(s) owned by a parent scenario

path: PathConnection [0..*] a collection of path connection(s) owned by parent

scenario

classifier: Classifier [0..*] describes dataflow and is a set of instances that

have features in common

refinement: Refinement [0..*] a collect ion of steps, which need refinement

Constraints

 A scenario may not directly or indirectly own itself.

Chapter 3 Core Scenario Model

- 58 -

3.3.1.3 Step

Description: A step is a fundamental unit of executable functionality. It describes the

processing tasks (e.g. procedures, functions actions, etc.) that a system perform.

Attributes

id: ID the identity of a step

name: string the name of a step

description: string [0..1] detailed information on a step

traceability_link: string [0..1] links to the original model

rep_count: double [0..1] the count of repetitions

Associations

predecessor: PathConnection [*] the predecessor(s) of current step

successor: PathConnection [*] the successor(s) of current step

refinement: Refinement [0..*] a collection of binding connections to refine current

step

precondition: PreCondition [0..1] constraint that must hold when the execution starts

postcondition: PostCondition [0..1] constraint that must hold when the execution

completes

inputset: InputSet [0..*] alternative sets of input values to the execution

outputset: OutputSet [0..*] alternative sets of result values from the execution

Component: Component [0..1] the component that contains current step

Resourceacqurie: ResourceAcqurie [0..1] the resource acquire action

Resourcerelease: ResourceRelease [0..1] the resource release action

Constraints

None

3.3.1.4 Refinement

Description: In order to show the complex behavior a step can make use for the

refinement class. A Refinement defines a connection between a single step and its

referenced scenario(s). The execution of a single step can involve the execution of the

Chapter 3 Core Scenario Model

- 59 -

complex scenario and its steps. The same behaviour is captured as a call behavior action

in UML 2.0 activity diagram or stub in Use Case Maps (UCM).

Attributes

selection_cond: string [0..1] A boolean condition for selecting scenario

Associations

parent: Step [1] the invoking step

sub: Scenario [1] the referenced scenario

inbinding: InBinding [*] the inputs to the step needing refinement

Outbinding: OutBding [*] the outputs from the step needing refinement

Constraints

 None

3.3.1.5 InBinding

Description: An InBinding joins an entry point of a step which needs refinement as a

scenario.

Attributes

id: ID the identity of an inbinding element

Associations

in: PathConnection [1] the entry point of invocation action

start: Start [1] the start point of the referenced scenario

Constraints

 None

3.3.1.6 OutBinding

Description: An OutBinding joins an exit point of a step with an end point from a

scenario.

Attributes

id: ID the identity of an outbinding element

Associations

out: PathConnection [1] the exit point of invocation action

Chapter 3 Core Scenario Model

- 60 -

end: End [1] the end point of the referenced scenario

Constraints

 None

3.3.1.7 PathConnection

Description: A PathConnection element is an abstract class for the connections between

two different elements of a scenario.

Attributes

id: ID the identity of path connection element

description: String [0..1] detail information of path connection element

traceability_link [0..1] the link to original model

Associations

source: Step [0..*] step element from which the path connection starts

target: Step [0..*] step element at which the path connection ends

classifier: Classfier [0..*] classifiers can be attached to the path flow

subin: InBinding [0..*] the entry point to sub-scenario

subout: OutBinding [0..*] the exit point from sub-scenario

subset : InputSet[0..*] alternative sets of inputs

subset: OutputSet[0..*] alternative sets of outputs

Constraints

(1) The source and target of a path connection element must be in the same scenario.

3.3.1.8 Start

Description: A Start element is where scenario is invoked. A scenario may have more

than one start element.

Attributes

 Attributes are same as of PathConnection as Start is a PathConnection.

Associations

inbinding: InBinding [0..*] the input points of a sub scenario

workload: Workload [1] the stream of requests attached to the scenario

Chapter 3 Core Scenario Model

- 61 -

Constraints

(1) A start element has no incoming edges.

(2) A start element must have only one target edge.

3.3.1.9 End

Description: An End element is where scenario is stopped. A scenario may have more

than one end element.

Attributes

 Attributes are same as of PathConnection as End is a PathConnection.

Associations

outbinding: OutBinding [0..*] the outputs from a sub scenario

Constraints

(1) An end element has no target edges.

(2) An end element must have only one source edge.

3.3.1.10 Sequence

Description: Sequence elements specify the sequencing of steps.

Attributes

 Attributes are same as of PathConnection as Sequence is a PathConnection.

Associations

 None

Constraints

(1) The source and target of a sequence element must be in the same scenario.

3.3.1.11 Branch

Description: A Branch represents alternative paths from a single source. The conditions

can be attached to branch elements so that a choice is determined when the condition is

true.

Attributes

 Attributes are same as of PathConnection as Branch is a PathConnection.

Chapter 3 Core Scenario Model

- 62 -

Associations

 None

Constraints

The branch element must have only one source and two or more targets.

3.3.1.12 Merge

Description: A Merge represents the merging of two or more independent alternative

paths. It is not used to synchronize concurrent paths but to accept one among several

alternative paths.

Attributes

 Attributes are same as of PathConnection as Merge is a PathConnection.

Associations

 None

Constraints

The merge element must have two or more sources and only one target.

3.3.1.13 Fork

Description: A Fork is an element that splits a path into two or more concurrent paths.

Attributes

 Attributes are same as of PathConnection as Fork is a PathConnection.

Associations

 None

Constraints

The fork element must have only one source and two or more targets.

3.3.1.14 Join

Description: A Join is an element that synchronizes two or more concurrent scenario

paths.

Chapter 3 Core Scenario Model

- 63 -

Attributes

 Attributes are same as of PathConnection as Join is a PathConnection.

Associations

 None

Constraints

The join element must have only one target and multiple sources.

3.3.1.15 Classifier

Description: A Classifier describes a set of instances that have common features.

Attributes

id: ID the identity of classifier

name: string [0..1] the name of classifier

traceability_link: string [0..1] links to the original model

Associations

 None

Constraints

 None

3.3.1.16 Message

Description: A Message is a kind of Classifier that defines the communications between

steps.

Attributes

kind: Msgkind [0..1] the type of message

size: double [0..1] the size of message

multi: double [0..1] the multiplicity

Other attributes are same as of Classifier as Message is a Classifier.

Associations

 None

Constraints

 None

Chapter 3 Core Scenario Model

- 64 -

3.3.2 Class Description of CSM Function Package

3.3.2.1 Constraint

Description: A Constraint is a condition which must be met before / after the execution

of Step.

Attributes

expression: string Condition to be met

Associations

 None

Constraints

 None

3.3.2.2 PreCondition

Description: Condition that must be met before the execution of Step.

Attributes

 expression: string Condition to be met prior to start of a Step

Associations

 None

Constraints

 None

3.3.2.3 PostCondition

Description: Condition that must be met after the execution of Step.

Attributes

 expression: string Condition to be met after completion of a Step

Associations

 None

Constraints

 None

Chapter 3 Core Scenario Model

- 65 -

3.3.2.4 InputSet

Description: Alternative sets of input to a Step.

Attributes

 None

Associations

precondition : PreCondition [0..1] constraint that must hold when the execution

of step starts

predecessorSubset : PathConnection [1..*] input set that must be available before the

execution of a step starts.

Constraints

 None

3.3.2.5 OutputSet

Description: Alternative sets of outputs from a Step.

Attributes

 None

Associations

postcondition :PostCondition[0..1] constraint that must hold after the execution

of step ends.

successorSubset: PathConnection[1..*] output set that must be available after the

execution of a step ends

Constraints

 None

3.3.3 Class Description of CSM Performance Package

3.3.3.1 GeneralResource

Description

A GeneralResource is an abstract class that represents the available resources for

execution of a Scenario.

Chapter 3 Core Scenario Model

- 66 -

Attributes

id: ID the identity of general resource element

name: string the name of general resource element

multiplicity: int [0..1] the property of being multiple

sched_policy: string [0..1] the type of schedule policy

traceability_link: string [0..1] links to the original model

Associations

perfMeasure: PerfMeasure [0..*] the performance measurement attached to resource

Constraints

None

3.3.3.1 ResourceAcquire

Description

A ResourceAcquire element defines acquire step of a resource. It is a kind of step with

additional attributes.

Attributes

r_units: double the number of resources being acquired

priority: string the priority of acquiring action

Associations

acquire: GeneralResource[0..*] resource that have been acquired

Constraints

[1] ResourceAcquire element cannot acquire any resource that is not available.

[2] ResourceAcquire element must be paired with ResourceRelease element.

3.3.3.3 ResourceRelease

Description

A ResourceRelease element defines release step of an acquired resource. It is a kind of

step with additional attributes.

Attributes

r_units: double the number of resources being released

Chapter 3 Core Scenario Model

- 67 -

Associations

release: GeneralResource[0..*] resource that have to be released

Constraints

[1] ResourceRelease step can not release any resource that is not acquired.

[2] ResourceRelease step must be paired with ResourceRelease element.

3.3.3.4 ActiveResource

Description

An ActiveResource represents the available server in the performance model.
Attributes

op_time: double [0..1] service time

Other attributes are same as of GeneralResource as Active Resource is a subclass of

GeneralResource.

Associations

 None

Constraints

None

3.3.3.5 PassiveResource

Description

A PassiveResource represents the resources that can be acquired and released.
Attributes

Attributes are same as of GeneralResource as Active Resource is a subclass of

GeneralResource.

Associations

None

Constraints

None

Chapter 3 Core Scenario Model

- 68 -

3.3.3.6 Component

Description

A component is the child of PassiveResource. Components represent abstract entities

such as: actors, objects, resources, processes, containers, and so on.

Attributes

Is_active_process: boolean [0..1] indication of active process

Other attributes are same as of GeneralResource as Component is a PassiveResource and

PassiveResource is a GeneralResource.

Associations

host: ProcessingResource [0..*] the host of component

parent: component [0..1] the parent of current component

sub: component [0..*] the children of current component

Constraints

None

3.3.3.7 Workload

Description

A Workload is an abstract class that represents the load intensity applied to a scenario.

Attributes

id: ID the identity of workload element

arrival_pattern: ArrivalProcess the pattern in which requests arrive

arrival_param1: double [0..1] the parameter for workload

arrival_param2: double [0..1] the parameter for workload

external_delay: double [0..1] external delay

value: double [0..1] the value

coeff_var_sq: double [0..1] the coefficient

description: string [0..1] the detail information

traceability_link: string [0..1] links to the original model

Chapter 3 Core Scenario Model

- 69 -

Associations

perfMeasure: PerfMeasure [0..*] the performance measurement attached to

resource

Constraints

None

3.3.3.8 PerfMeasure

Description

A PerfMeasure represents the measurement such as delay, throughput and utilization

during execution of a scenario.

Attributes

id: ID the identity of a performance measure

name: string the name of a performance measure

traceability_link: string [0..1] links to the original model

measure: perfAttribute=delay the type of measurement

Associations

trigger: Step [0..1] the step to start the performance

measurement

end: Step [0..1] the step to end the performance

measurement

duration: Workload [0..1] the duration in time

resource: GeneralResouce [0..1] the resource involved in performance

measurement

respTime: PerfValue[1] the response time

Constraints

[1] The trigger and end must be used in a pair.

[2] One of trigger, duration, or resource association is required.

Chapter 3 Core Scenario Model

- 70 -

3.3.3.9 PerfValue

Description

A PerfValue represents the estimated value, which is calculated by a performance

analysis tool, required value that comes from system requirements, assumed value, which

comes from experience, or a measure value.

Attributes

value: string the calculated result

kind: PerfValuekind [0..1] the type of result value

source: PerfValueSource [0..1] the source of value

percentile: string [0..1] the value of percentile

kth_moment: string [0..1] the expected value of distribution

Associations

None

Constraints

None

3.4 Advantages of Core Scenario Model

It is a very well known fact that the cost of functional/performance errors is much less if

detected at the early stages of the software projects. CSM can help in validating the

functional and performance needs of the software projects at initial stages. It has been

defined to act as a unified intermediate interface for functional and performance models.

It provides an entry point to different types of functional and performance models like

Layered Queuing Networks, Petri Nets, etc. Having an intermediate CSM representation

can reduce the number of transformation tools needed as explained in Section 3.1. The

results achieved from the functional and performance analysis can be fed back for

making critical design decision.

3.5 XML Schema for CSM

The CSM class diagrams in the above section represent the essential classes of the CSM

metamodel and their relationships. They define the vocabulary used in our

transformation. However, in a practical transformation process, we need an interchange

Chapter 3 Core Scenario Model

- 71 -

file format that provides a concrete syntax for the concepts in the metamodel. We use

XML for this purpose. An XML schema to validate XML files was proposed for the

CSM by Dorin Petriu, Prof Daniel Amyot and Yong Xiang Zeng [37].

For the automatic generation of an XML schema for the Core Scenario Model an Eclipse

plug-in tool called HyperModel [18] was used. This tool can generate a schema from a

UML Class Diagram. The XML schema was slightly modified manually to comply with

validation tools such as XML Spy and Xerces parser. The XML schema is shown as

Appendix A.

3.6 Chapter Summary

This chapter defines the Core Scenario Model (CSM) in detail and our contributions to it.

In Section 3.2 similarities between UML Activity Diagrams and UCM are discussed

which are the motivation behind the development of CSM. Section 3.3 defines the CSM

metamodel and provides the description of different classes of the core and functional

packages of the CSM. Section 3.5 explains the generation of XML Schema for CSM.

This schema is used for validating the XML instance files for CSM. With this CSM, we

are ready to support many transformations from different design specifications to CSM

and from CSM to different functional and performance models. Work on transformation

from UCM to CSM has been done by Prof Daniel Amyot’s student, Yong Xiang Zeng

[37] and the CSM instance files generated by him were used for testing the

implementation done under this thesis. In the rest of this thesis, we will focus on the

transformation from Activity Diagrams to Petri Nets and from CSM to Petri Nets.

Chapter 4 Activity Diagrams to Petri Nets

- 72 -

Chapter 4 Translation of Activity Diagrams into Petri
Nets

4.1 Overview

Validation of requirements specifications is undoubtedly an integral part of requirements

engineering. Validation is the process of checking whether the requirements

specifications meet the intentions and expectations of the stakeholders. There are

different approaches for validation of the requirements. One of the approaches is based

on simulation/execution of system models that are derived from initial requirements

specifications. As already mentioned in Chapter 2, Petri Nets is a formal language which

can be used for validation of requirements by simulating/executing the system models.

In this chapter, we explain how the concepts introduced in Activity Diagrams UML 2.0

can be mapped to Petri Nets. This chapter also describes the concepts that are Activity

Diagram specific and cannot be mapped to Petri Nets. These rules can be used for

automated translation of Activity diagrams to Petri Nets using the XMI syntax for the

UML diagrams. At the end we explain different possibilities of simplifications of

Activity Diagrams before the transformation to Petri Nets to reduce the number of

transitions, places and arcs in the resulting net.

4.2 Activity Diagrams, CSM and Petri Nets

The table below explains the mapping of concepts of Activity Diagrams to Petri Nets.

Concept Activity Diagram Petri Nets

1. Scenario

representation

Activity

CP Net

2. Entities Swimlane / Partition

Will be modeled as a Place

Chapter 4 Activity Diagrams to Petri Nets

- 73 -

Concept Activity Diagram Petri Nets

3.Function and

action performed

 Action Transition

4. Scenario start

and stop

Initial Node & Final Node

(Flow Final)

A place without any incoming

edge and a place without any

outgoing edge, respectively.

5. Alternative

scenario

Sub activity

Subpage

6. Concurrency

flow

Fork Node

Will be modeled as a Transition

7. Alternative

flow

Decision Node

Will be modeled as a Place

8. Sequence flow ActivityEdge

Arc

9.Alternative

merge

Merge Node Will be modeled as a Place

10.Synchronizing

concurrent flow

Join Node

Will be modeled as a Transition

11. Objects Object Node Will be modeled as a Place

TABLE 4.1: Concept Comparison Activity Diagrams and Petri Nets

4.2 Transformation Rules from Activity Diagrams to Petri Nets

4.2.1 Executable / Action Nodes
In Activity Diagrams, an action is the fundamental unit of behavior specification. An

action takes a set of inputs and converts it to a set of outputs, though either or both sets

may be empty. The outputs of one action may be provided as inputs to other actions using

the activity flow model.

Chapter 4 Activity Diagrams to Petri Nets

- 74 -

Like Actions in Activity Diagrams, Transitions are active components in Petri Nets. They

model activities which can occur, thus changing the state of the system. Transitions are

only allowed to fire if they are enabled, which means that all the preconditions for the

activity have been fulfilled, which is similar to actions in UML 2.0.

It is proposed to map an Executable / Action Nodes in Activity Diagram to a Transition

in Petri Nets as it seems to be a natural mapping.

4.2.2 Control Nodes
In Activity diagrams control nodes are used to route control and data through the activity

graph. UML2.0 has seven concepts and five different notations for control nodes. Where

as a Petri Net contains only three types of elements i.e. transition, place and arc. So it is

necessary to map more than one concept of Activity Diagrams on a single concept in

Petri Nets.

4.2.2.1 Initial Nodes

Initial nodes receive control when an activity is started and pass it immediately along

their outgoing edges. No other behavior is associated with initial nodes in UML. Initial

nodes cannot have edges coming into them. The natural mapping of an Initial Node is a

Place without any incoming edges, also called Source in Petri Nets.

4.2.2.2 Decision Node

Decision nodes guide flow in one direction or another, but exactly which direction is

determined by the constraints over the edges coming out of the node. It is proposed to

map Decision node on a Place in Petri Nets.

4.2.2.3 Merge Node

Merge nodes bring together multiple flows. All control and data arriving at a merge node

are immediately passed to the edge coming out of the merge. Merge nodes have the same

notation as decision nodes, but merge have multiple edges coming in and one going out,

whereas it is the opposite for decision nodes. Flows coming into a merge are usually

Chapter 4 Activity Diagrams to Petri Nets

- 75 -

alternatives from an upstream decision node. It is proposed to map Merge node on a

Place in Petri Nets.

4.2.2.4 Fork Node

Fork nodes in Activity Diagram are used to model concurrent flows. Control and data

arriving at a fork are duplicated across the outgoing edges. No other behavior is

associated with fork nodes. UML2.0 has introduced a concept of Pins which are

associated with the Actions. If an action has more than one associated Output Pins, it can

be used to model concurrent flow. Therefore, it is proposed to map a Fork Node on a

Transition. If a Fork Node in Activity Diagram immediately precedes an Action Node we

can simplify it. The simplification rules are defined in Section 4.3.

4.2.2.5 Join Node

Join nodes synchronize multiple flows. In the common case, control or data must be

available on every incoming edge in order to be passed to the outgoing edge. An action

with more than one associated input Pins, depicts the same behavior as a join node.

Therefore it is proposed to map a Join Node on a Transition.

4.2.2.6 Final Node

There are two types of final nodes in Activity diagrams with the difference that Flow

Final Node terminates only the local flow whereas an Activity Final node terminates the

entire activity. In Petri Nets a Place with no outgoing edge is called a Sink and is like

Flow Final Node in Activity Diagram. The concept of Activity Final Node cannot be

mapped to sink as there is no notion of destroying tokens. This behavior can be captured

programmatically while executing the Petri Nets.

4.2.3 Object Nodes
There are four different kinds of object nodes in UML2.0 Activity Diagrams (as

explained in Section 2.4). Object nodes are used to hold data temporarily as they wait to

move through the graph. They specify the type of value they can hold.

Chapter 4 Activity Diagrams to Petri Nets

- 76 -

In Petri nets places are place holders for tokens. In Colored Petri Nets the places are

typed for specifying the type of value a place can hold.

It is proposed to map an Object Node in Activity Diagram to a Place in Petri Nets.

4.2.4 Activity Edges
There are two kinds of activity edges in Activity Diagrams UML2.0, Control Flow Edges

and Object Flow Edges. In Colored Petri Nets the edges are typed defining what kind of

token can pass through the edge. Both kinds of edges in Activity Diagrams will be

mapped on typed edges in Petri Nets.

As already explained in Chapter 2 that Petri Nets are bi-partite graphs meaning that a

place cannot be preceded by a place and same is true for transitions. In Activity Diagrams

or CSM there is no restriction of this type. The following rules apply during

transformation of edges from activity diagrams to Petri Nets.

1) If source node of an activity edge is initial node and target nodes are

action, fork or join then replace this activity edge with an arc.

2) If source of an activity edge is initial node and target nodes are decision,

merge or final then replace the activity edge with an arc, a dummy

transition and a dummy arc.

3) If source node of an activity edge is an action node and target nodes are

action, fork or join then replace the activity edge with an arc, a dummy

place and a dummy arc.

4) If source node of an activity edge is an action and target nodes are

decision, merge, object or final then replace the activity edge with an arc.

5) If source node is fork or join and target nodes are action, fork or join then

replace the activity edge with an arc, a dummy place and a dummy arc.

6) If source node of an activity edge is fork or join and target nodes are

decision, merge or final then replace the activity edge with an arc.

7) If source node of an activity edge is decision, object or merge and target

nodes are action, fork or join then replace the activity edge with an arc.

Chapter 4 Activity Diagrams to Petri Nets

- 77 -

8) If source node of an activity edge is decision, object or merge and target

nodes are decision, merge or final then replace the activity edge with an

arc a dummy place and a dummy arc.

The rules are also presented in the following table.

Source Node(s) of Edge Target Node(s) of Edge Transformation

• Initial Node or

• Decision Node or

• Merge Node or

• Object Node

• Action Node or

• Fork Node or

• Join Node

Arc

• Initial Node or

• Decision Node or

• Merge Node or

• Object Node

• Decision Node or

• Merge Node or

• Object Node or

• Final Node

Arc, dummy

Transition and

dummy Arc

• Action Node or

• Fork Node or

• Join Node

• Action Node or

• Fork Node or

• Join

Arc, dummy Place

and dummy Arc

• Action Node or

• Fork Node or

• Join Node

• Decision Node or

• Merge Node or

• Object Node or

• Final Node

Arc

TABLE 4.2: Translation rules of Activity Edges to Petri Nets

4.2.5 Activity Partition
Partitions are used to indicate what or who is responsible for actions grouped by the

partition. There is no available notation for partitions in the Petri Nets, but they can be

mapped as tokens in resource places as shown by Gregor v.Bochmann [17].

Chapter 4 Activity Diagrams to Petri Nets

- 78 -

4.3 Simplification of Activity Diagrams before Transformation

Simplification rules are for decreasing the number of places and transitions in the

generated Petri Net. It is quite possible that, while modeling with Activity Diagrams the

modeler models a system in such a manner that these simplifications are never required.

But if for better visual understanding of the system, the modeler opts to use the notations

in the sequence described below, then we can simplify the description by applying the

rules defined in the following section. At the end of this chapter we present examples of

Activity Diagrams which have been taken from UML 2.0 Specification [26] and

transformed in to Petri Nets after simplification of the Activity Diagram.

4.3.1 An Action Node followed by a Fork Node
In Activity Diagram, Fork Node is used to duplicate the tokens for concurrent flows and

no other behavior is associated with it. In the proposed transformation rules, Fork Node

has been mapped on a transition. So if an Action Node is followed by a Fork Node it can

be replaced with an Action node with more than one outgoing edges as shown in the

figure below.

Action

Fork NodeAction Node

Transition

Simplification

Transformation

Figure 4.1: An Action node is followed by a Fork node.

Chapter 4 Activity Diagrams to Petri Nets

- 79 -

4.3.2 A Fork Node followed by a Fork Node
If a Fork Node is followed by a Fork Node in an Activity Diagram it can be simplified as

one Fork Node as the purpose of a Fork is to duplicate tokens.

Figure 4.2: A Fork node is followed by a Fork node.

Chapter 4 Activity Diagrams to Petri Nets

- 80 -

4.3.3 A Join Node followed by a Fork Node
A Join Node is used to synchronize multiple flows in Activity Diagrams. If a Join Node

is followed by a Fork Node then in the simplification phase those can be replaced with

Action Node as shown in the Figure 4.4

Figure 4.3: A Join node is followed by a Fork node.

Chapter 4 Activity Diagrams to Petri Nets

- 81 -

4.3.4 A Join Node Followed by a Join Node
Join nodes are used to synchronize multiple flows. Join nodes take one token from each

of the incoming edges and combine them as per rules described in Section 2.4.2.5. Then

these tokens are offered to the out going edge. If a join node is immediately followed by

another join, it means that the tokens coming to first join will be combined first and then

that combined token will again be combined with the tokens coming at second join. So

this process of combing can be replaced with one Join node combining all the tokens as

shown in the figure below.

Figure 4.4: A Join node is followed by a Join node.

Chapter 4 Activity Diagrams to Petri Nets

- 82 -

4.3.5 A Decision Node Followed by a Decision Node

Decision nodes are used for guiding flows in one direction or another depending on the

guards over the edges coming out of the node. The guards over edges are evaluated for

each individual control and data token arriving at the decision node to determine the edge

the token will traverse. If a decision node is followed by another decision it means that

guards will be first checked on the outgoing edges of the first decision and then the same

token will again be checked against other guards over the edges on second decision node.

It is possible to check these guards at one place so a decision node followed by another

decision can be replaced by one Decision Node.

Figure 4.5: A Decision node is followed by a Decision node.

Place

Decision Node

Decision Node

Decision Node

Simplification

Transformation

Chapter 4 Activity Diagrams to Petri Nets

- 83 -

4.3.6 A Merge Node Followed by a Decision Node
Merge nodes are used to bring together multiple flows. All control and data arriving at a

merge node are immediately passed to the edge coming out of the merge. If a merge node

is followed by a decision node it can be replaced by one place as the token which arrives

first will be evaluated against the guards on edges and this operation of arriving tokens

and guard evaluation can be done at one node.

Decision Node

Merge-Decision

Merge Node

Place

Simplification

Transformation

Figure 4.6: A Merge node is followed by a Decision node.

Chapter 4 Activity Diagrams to Petri Nets

- 84 -

4.3.7 A Merge Node Followed by a Merge Node
If a merge node is followed by a merge node it can be replaced by one merge as the token

which arrives first will be immediately forwarded to the outgoing edge if we assume that

the processing time at the nodes is negligible.

Figure 4.7: A Merge node is followed by a Merge node

4.4 Examples

The activity diagram in Figure 4.8 represents the definition of Order Processing for a

business. A Parameter node for receiving the order has been shown of the left hand side

on the border of the diagram. As soon as an order is received the Receive Order action is

triggered. A decision node after Received Order illustrates branching based on order

rejected or order accepted conditions. Fill Order is followed by a fork node which passes

control both to Send Invoice and Ship Order. The join node indicates that control will be

passed to the merge when both Ship Order and Accept Payment are completed. Since a

Chapter 4 Activity Diagrams to Petri Nets

- 85 -

merge will just pass the token along, Close Order activity will be invoked. (Control is

also passed to Close Order whenever an order is rejected.) When Close Order is

completed, control passes to an activity final. Figure 4.9 shows the activity diagrams after

applying the simplification rules. The Fill Order action and the following Fork (shown

within a rectangular box on Figure 4.8) has been represented by the Fill Order action in

Figure 4.9.

Figure 4.8: Activity Diagram for order processing

Figure 4.9: Activity Diagram after simplification for order processing

Chapter 4 Activity Diagrams to Petri Nets

- 86 -

Figure 4.10: Petri Net after transformation for order processing

The activity diagram in Figure 4.11 is for the trouble ticket problem and has also been

taken from the UML2.0 Specification [26]. The trouble ticket scenario covers quality

assurance teams or customer support teams. If a "bug" or "problem" is identified; it must

be recorded; the record must be checked for accuracy; from a single instance of a

problem, the underlying cause is identified; a resolution is identified, which must be

communicated back to the original party with the problem. Figure 4.12 shows the activity

diagrams after applying the simplification rules. The decision node followed by decision

node (shown within rectangular boxes on Figure 4.11) has been translated as one decision

node.

 [Order
Accepted]

 [Order
Rejected]

Receive Order Fill Order

Ship Order

 Send Invoice Make Payment Accept Payment

Close Order

Reject
order

Join

Requested
Order

Invoice

Chapter 4 Activity Diagrams to Petri Nets

- 87 -

Figure 4.11: Activity Diagram for trouble ticket

Figure 4.12: Activity Diagram after simplification for trouble ticket

Chapter 4 Activity Diagrams to Petri Nets

- 88 -

Figure 4.13: Petri Net after transformation for trouble ticket

4.5 Elements Not Mapped

The reader should notice that Petri Net is not intended to duplicate all the information

found in Activity Diagrams. A consequence is that there are some concepts that are

unique to Activity Diagrams, and are difficult to map into Petri Nets.

The list of the elements not mapped is as under

Activity Final Node: is a node that stops all the flows in an activity and immediately

terminates the entire activity. In Petri Nets, there is no notation for destroying tokens.

Interruptible Activity Region: is for supporting termination of tokens flowing in the

portions of an activity. There is no notation for destroying tokens in Petri Nets and so it

cannot be mapped.

Record Problem Reproduce
Problem

 Correct
Problem Forward

ID and Problem
Resolution

Forward

Verify
Resolution

Audit and
Record

Communicate
results

Forward

Forward

Forward

[Problem not
solved]

[Else]

[Recorded &&
Problem
Statement
Rectified]

[Else]

[Cannot
Reproduce
Problem]

[Known
Problem]

[Can
Reproduce
Problem]

[Duplication]

Forward

Forward

[! Recorded]

Chapter 4 Activity Diagrams to Petri Nets

- 89 -

Exception Handler: specifies a body to execute in case of specified exception. There is

no notion of exception handling in Petri Nets.

4.6 Chapter Summary

This chapter describes the transformation process of Activity Diagrams to the Petri Nets.

We provided a mapping from Activity Diagram & CSM concepts to Petri Nets. After the

transformation rules from AD to PN, we have defined some rules for simplification of

Activity Diagrams before transformation to Petri Nets. These simplification rules are

inline with the UML2.0 Activity Diagram Specifications. At the end we have discussed

few concepts which are unique to activity Diagrams and cannot be mapped to Petri Nets.

Chapter 5 CSM to Petri Nets

- 90 -

Chapter 5 CSM to Petri Nets

5.1 Overview

As already explained in Chapter 3, the Core Scenario Model (CSM) is an intermediate

notation that can be transformed into formal functional and preliminary performance

models for software systems. Validating the system models is an essential part of the

requirements validation process. Functional validation analysis can be effective in

avoiding functional disasters and generating formal requirements for the software to be

built. Preliminary performance analysis can be helpful in determining the potential

performance issues of the software to be built. The UML Profile for Schedulability,

Performance and Time (SPT) [27] was developed for assisting to capture the performance

data, and automation of the model-building step.

The figure below is a high level view of the work being done at the University of Ottawa

which is part of a bigger project being done jointly with Carleton University. Our work in

this chapter is the translation of a CSM XML file, generated from a UCM, into an

equivalent Petri Net representation.

Figure 5.1: High level view of transformation from UCM to CSM and from CSM to

Petri Nets

In this chapter we explain how the functional concepts of CSM can be mapped into Petri

Nets. Also we define an algorithm for the automatic transformation of functional

concepts of CSM to Petri Nets.

Chapter 5 CSM to Petri Nets

- 91 -

5.2 Mapping from CSM to Petri Nets

A mapping of the concepts from Activity Diagrams to Petri Nets has been shown in

Table 4.1, and in Table 3.1 we have shown how the concepts of UML 2.0 Activity

Diagrams have been mapped to CSM. The above mentioned tables can be used for

defining a mapping of a CSM into Petri Nets. The automatic transformation can be

achieved by making use of the XML Schema for CSM and Petri Net DTD which are

shown in Appendix A and B. There was no documentation available for the Petri Net

DTD. In order to understand the structure of this DTD, graphical views were prepared

using XMLSpy and have been shown in Appendix C.

5.3 Transformation Algorithm

The algorithm reads an XML files containing the input Core Scenario Model and

transforms it into an output Petri Net. The input file is parsed and converted into a DOM

tree. Then the tree is traversed and transformation rules are applied on the nodes and the

resultant nodes are stored into an arraylist. At the end, this arraylist is traversed and

results are written into a CPN DTD compliant XML file.

While designing the application we had two options; either to update the original DOM

tree created from the input file or create a new XML tree. We opted to create a new tree

due to the reason that tracking information in the CSM elements is stored on all the

nodes. If we update a node and later on we need some tracking information of the

original node, it won’t be there. An example of this problem is shown below. We have a

Start node in a CSM file which has two target nodes h1 and h2. If we traverse the start

node and update it to a Petri net place, the target information has to be deleted, but we

need this information at the later stage when creating arcs for the complete

transformation to work.

CSM Element

<Start id="h0" name="Start" target= "h1 h2" >

</Start>

Chapter 5 CSM to Petri Nets

- 92 -

Equivalent Petri Net Element

<place id="h0">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="”/>

<lineattr colour="Black" thick="1" />

<textattr colour="Black" bold="false"/>

<text>Start</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" />

</place>

The main steps of the transformation algorithm (at a high level of abstraction) are as

follows:

1) Parse the input xml document and create a DOM tree;

2) Find the root node and from there find the Scenario node. The Scenario node is

translated as a Page in the Petri Net representation; *Note: Node in the algorithm

refers to elements of the input XML file after the creation of the DOM tree.

3) Traverse through the children of Scenario node (found in step 2) in the source

DOM tree and apply the following transformation rules;

4) If the node is of type Start, End, Branch or Merge then create a place and if the

node is of type Step, Fork or Join then create a transition as a child of the Page in

the resulting Petri Net representation and store it in the arraylist data structure.

5) If the node is of type Sequence then apply the rules shown in Table 4.2. The

resulting nodes are children of the Page and stored in the arraylist data structure.

6) If a step needs a refinement repeat from step 2 to step 5.

7) After complete traversal of the source DOM tree, write the resulting output stored

in the arraylist data structure to the output XML file.

The most interesting part is the middle of the algorithm that does the actual

transformation. Primarily what the transformation does is to create an output model that

Chapter 5 CSM to Petri Nets

- 93 -

represents the Petri Net from the input model, based on the transformation rules that were

described in Chapter 4. These rules can be roughly seen as a transformation algorithm

expressed at the metamodel level. Each basic case reflects a facet of the algorithm in

certain situations. In this section the transformation algorithm has been described at the

implementation level, showing how the objects in the input file can be manipulated to

create an output document which is compliant to the Petri Net DTD.

5.4 Details of the implementation

The transformation algorithm described above is at very high level and the actual

implementation is much more complex than that. In the actual implementation we have to

add additional Transitions, Places and Arcs along with tracking information (information

about the source and target of the node under parsing) in the resulting Petri Net. The new

Transitions, Places and Arcs are to be added due to the property that a Petri Net is a bi-

partite graph. So we cannot have two Places or Transitions in a row. In this section, we

explain the implementation and further details of the algorithm, such as handling the

tracking information etc.

The implementation consists of three main parts:

1) XML input

2) Transformation

3) XML output

For the implementation of the algorithm, following options were available:

1) Using XSL Transformations

2) Using a programming language to implement the transformation

As already explained in Chapter 2, handling data (e.g. strings) is very cumbersome in

XSLT as compared with other programming language like Java. XSLT is mainly used for

publishing/presentation purpose. So, we decided to implement the transformation in a

programming language and decided to use Java as it has very well defined Application

Chapter 5 CSM to Petri Nets

- 94 -

Programming Interfaces (APIs) for XML. We decided to use the Document Object

Model (DOM) which allows random access to nodes and is a W3C standard. The Simple

API for XML was another option for transformation but it allows sequential access only

and so far it is not a standard of W3C.

Figure 5.2: High level view of applications working

As already mentioned the tracking information in Petri Nets is only contained in the arcs

which connect a place and a transition, unlike in CSM where the tracking information is

stored in all the nodes. In our implementation we traverse the DOM tree to find the

desired Node and then create an equivalent node along with its attributes, add new nodes

if required as per the CPN DTD, and then store the results into an arraylist. This arraylist,

after complete traversal of the document, is used to create a new CPN Tools DTD

compliant XML file.

The implementation generates an XML file which did not contain the display information

for the Petri Nets. Also the CPN tools do not have auto-layout feature. It would be very

useful if the generated Petri Net could be visualized.

5.6 Chapter Summary

This chapter described the transformation process of functional concepts in CSM to the

Petri Nets. We provided an algorithm for automated translation of CSM to Petri Nets. We

also discussed various options available for implementation of the algorithm and reasons

for choosing a programming language.

Chapter 6 Case Study

- 95 -

Chapter 6 Case studies
For validation of the application developed by implementing the algorithm it was tested

for all concept defined in the CSM for building functional models. For validation of the

system built, black box testing was done, where we provided different inputs to the

system and verified that the results produced are as desired. The inputs provided were

XML representations of the CSM and the outputs generated were XML representation of

the Petri Nets. Following test procedure was used for all the tests

1) Open the application in Java Editor.

2) Run the application and provide the name of input XML file.

3) Provide the name of output XML file.

4) Open the resulting output file and compare the result with the expected result.

6.1 Case Study 1

To illustrate the transformation from UCM to CSM and then from CSM to Petri Nets, we

extend the simple call request shown in Figure 6.1 below.

Figure 6.1: Call Root Map in UCM

6.1.1 UCM Representation of Simple Call Request

The Call Root Map shows a simple unbound UCM where a user attempts to establish a

telephone call with another user through some network. The scenario contains two stubs.

Chapter 6 Case Study

- 96 -

The first stub (Sorig) contains the Originating plug-in whereas the second (Sterm)

contains the Terminating plug-in. The plug-ins, generated with the UCM Navigator, are

presented in Figures 6.2 and 6.3.

The caller first sends a connection request to the network. This request is checked by

Originating Call Screening (OCS), which checks whether the call should be denied or

allowed. The binding relationship for Sorig, which connects the input/output segments of

a stub to the start/end points of its plug-in, is {< IN1, start >, < OUT1, success >, <

OUT2, fail >}.

Figure 6.2: OCS Plug-in in UCM

Figure 6.3: Terminating Plug-in in UCM

In the terminating Plug-in, it is first checked if the called number is busy or not. If the

called number is busy the caller is notified and if the number is not busy then a ring

message is sent to the called number and a notification is also sent to the caller. The

Terminating side contains a Sterm plug-in. The binding relationship is {< IN1, start >, <

OUT1, ring >, < OUT2, busy >, < OUT3, ringing >}.

Chapter 6 Case Study

- 97 -

6.1.2 UCM to CSM Transformation

Work on the transformation from UCM to CSM has been done by Yong Xiang Zeng, in

his Master Thesis [37]. The resulting CSM XML file for the simple call request is shown

below. The binding information for steps that need refinement is shaded grey.

<?xml version="1.0" encoding="utf-8"?>

<CSM name="root" description="" >

 <Scenario id="m0" name="root" description="This example is for a Simple Call

System." >

 <Start id="h0" name="Request" target= "h1" ></Start>

 <Sequence id="h1" name=" " source= "h0" target= "h2" />

 <Step id="h2" name="Sorig" description=" " predecessor= "h1" successor= "h3

h4">

 <Refinement parent="h2" sub="m1">

 <InBinding id="in1" start="h17" in="h1"/>

 <OutBinding id="out1" end="h25" out="h3"/>

 <OutBinding id="out2" end="h27" out="h4"/>

 </Refinement>

 </Step>

 <Sequence id="h4" name=" " source= "h2" target= "h5" />

 <End id="h5" name="Notify" source= "h4" />

 <Sequence id="h3" name=" " source= "h2" target= "h6" />

 <Step id="h6" name="Sterm" description=" " predecessor= "h3" successor= "h7

h9 h13">

 <Refinement parent="h6" sub="m2">

 <InBinding id="in2" start="h28" in="h3"/>

 <OutBinding id="out3" end="h35" out="h7"/>

 <OutBinding id="out4" end="h41" out="h9"/>

 <OutBinding id="out5" end="h44" out="h13"/>

Chapter 6 Case Study

- 98 -

 </Refinement>

 </Step>

 <Sequence id="h7" name=" " source= "h6" target= "h8" />

 <End id="h8" name="Ring" source= "h7" />

 <Sequence id="h9" name=" " source= "h6" target= "h10" />

 <Step id="h10" name="Fwd_sig" description=" " predecessor= "h9" successor=

"h11" />

 <Sequence id="h11" name=" " source= "h10" target= "h12" />

 <End id="h12" name="Busy" source= "h11" />

 <Sequence id="h13" name=" " source= "h6" target= "h14" />

 <Step id="h14" name="Fwd_sig" description=" " predecessor= "h13" successor=

"h15" />

 <Sequence id="h15" name=" " source= "h14" target= "h16" />

 <End id="h16" name="Ringing" source= "h15" />

 </Scenario>

<Scenario id="m1" name="OCS Plug In" description="OCS Plug In" >

 <Start id="h17" name="Start" target= "h18" ></Start>

 <Sequence id="h18" name=" " source= "h17" target= "h19" />

 <Step id="h19" name="Check OCS" description=" " predecessor= "h18"

successor= "h20"> </Step>

 <Sequence id="h20" name=" " source= "h19" target= "h21" />

 <Branch id="h21" name=" " source= "h20" target= "h22 h26" />

 <Sequence id="h22" name=" " source= "h21" target= "h23" />

 <Step id="h23" name="Deny" description=" " predecessor= "h22" successor=

"h24"> </Step>

 <Sequence id="h24" name=" " source= "h23" target= "h25" />

 <End id="h25" name="Fail" source= "h24" />

 <Sequence id="h26" name=" " source= "h21" target= "h27" />

 <End id="h27" name="Success" source= "h26" />

 </Scenario>

Chapter 6 Case Study

- 99 -

 <Scenario id="m2" name="Terminating Plug In" description="Terminating Plug In" >

 <Start id="h28" name="Start" target= "h29" ></Start>

 <Sequence id="h29" name=" " source= "h28" target= "h30" />

 <Branch id="h30" name=" " source= "h29" target= "h31 h32" />

 <Sequence id="h32" name=" " source= "h30" target= "h33" />

 <Step id="h33" name="Busy Treatment" description=" " predecessor= "h32"

successor= "h34"></Step>

 <Sequence id="h34" name=" " source= "h33" target= "h35" />

 <End id="h35" name="Fail" source= "h34" />

 <Sequence id="h31" name=" " source= "h30" target= "h36" />

 <Fork id="h36" name="Step" source= "h31" target="h37 h38"/>

 <Sequence id="h38" name=" " source= "h36" target= "h39" />

 <Step id="h39" name="Ringing Treatment" description=" " predecessor= "h38"

successor= "h40"></Step>

 <Sequence id="h40" name=" " source= "h39" target= "h41" />

 <End id="h41" name="Report Success" source= "h40" />

 <Sequence id="h37" name=" " source= "h36" target= "h42" />

 <Step id="h42" name="Ring Treatment" description=" " predecessor= "h37"

successor= "h43"></Step>

 <Sequence id="h43" name=" " source= "h42" target= "h44" />

 <End id="h44" name="Success" source= "h43" />

 </Scenario>

</CSM>

Based on the notation used by Woodside et al. [24] we have shown the results produced

by Zeng [37] for the Simple Call request in Figure 6.4, 6.5 and 6.6.

Chapter 6 Case Study

- 100 -

Figure 6.4: Basic Call Root Map in CSM

Figure 6.5: OCS Plug-in CSM

Chapter 6 Case Study

- 101 -

Figure 6.6: Terminating Plug-in in CSM

6.1.3 CSM to Petri Net Transformation

The Petri Net obtained by the translation from the CSM above is shown in Figures 6.7,

6.8 and 6.9. The corresponding Petri Net XML file is shown in Appendix D.

Start Sorig-

Sub
Sterm-

Sub

Fwd sig

Fwd sig

Notify

Busy

Ringing Place

Place

Ring

Place

Figure 6.7: Basic Call Root Map in Petri Net

Chapter 6 Case Study

- 102 -

Figure 6.8: OCS Plug-in Petri Nets

Figure 6.9: Terminating Plug-in in Petri Net

6.1.4 List of Elements/Associations/Attributes Covered

In the simple call example following elements/attributes/associations in CSM were
successfully translated to equivalent Petri Net

1) CSM
2) Scenario/Sub Scenario
3) Start
4) Step
5) Sequence
6) Refinement
7) Inbinding
8) Outbinding
9) Branch
10) Fork

Chapter 6 Case Study

- 103 -

11) End
12) Id
13) Name
14) Source/Target
15) Successor/Predecessor
16) Perent
17) Sub
18) In/Out

6.2 Case Study 2

For validation of remaining functional concepts of CSM like Marge, Join etc, we used the
wireless telephony example as shown in Figure 6.10.

Figure 6.10: Wireless Telephony

The expected result was an XML representation of an equivalent Petri Net. The output
from the application was checked and all the functional concepts in the XML
representation of CSM were successfully translated into the resulting XML representation
of Petri Nets.

6.2.2 List of Elements/Associations/Attributes Covered

In the wireless Telephony example following element/associations/attributes in CSM
were successfully translated as XML representation of equivalent Petri Net

1) CSM
2) Scenario
3) Start
4) Step

Chapter 6 Case Study

- 104 -

5) Sequence
6) Refinement
7) Inbinding
8) Outbinding
9) Branch
10) Fork
11) End
12) Merge
13) Join
14) Id
15) Name
16) Source/Target
17) Successor/Predecessor
18) Perent
19) Sub
20) In/Out

6.4 Chapter Summary

This chapter describes a small case study of the transformation process from a CSM

model into the Petri Net representation. We have drawn the figures for the CSM and the

generated Petri Net manually based on XML files. UCMNav does not support the visual

aspect of CSM and can only be used to generate a CSM form UCM. Our Petri Net tools

do not support automatic layout.

Chapter 7 Conclusion

- 105 -

Chapter 7 Conclusion

7.1 Conclusion

Our work is one step in a larger research project aiming at deriving formal functional and

performance models from UML and URN models and integrating the results of

functional and performance analysis back to the these models. Although the CSM

notation is still evolving, we still believe that the conceptual approach proposed in this

thesis will be applicable to the future versions. The contributions of our work can be

summarized as follows.

1) We proposed an approach to transform UML Activity Diagrams 2.0 to

Petri Nets. The thesis reviewed the UML 2.0 Activity Diagrams and Petri

Nets and proposed translation rules. It identified the metaclasses

introduced in Activity diagrams and their corresponding representation in

Petri Nets. It also discusses the concepts of Activity Diagrams that cannot

be easily mapped on Petri Net concepts.

2) We proposed some simplification rules to Activity Diagrams prior to

translation to Petri Nets in order to reduce the number of transitions,

places and arcs in the resulting Petri Net.

3) The thesis describes an approach to translate functional parts of CSM into

Petri Nets. It discusses our contributions in the definition of the CSM. It

also identified the metaclasses introduced in CSM and their corresponding

representation in Petri Nets.

4) In order to automate the transformation process the thesis proposed an

algorithm for the transformation of an XML representation of a CSM into

an XML representation Petri Nets. The thesis introduced the

transformation rules firstly at the conceptual level and then at

implementation level. This algorithm was implemented as Java

application. The application uses the DOM API to process XML

documents. The limitations of the implementation were also discussed.

Chapter 7 Conclusion

- 106 -

The thesis made the first known attempt at Activity Diagram & CSM transformation to

Petri Nets.

7.2 Future work

There are some issues which need to be addressed in future work. These issues are

closely related to the challenge related to the automatic derivation of formal functional

and performance models from software specification and the integration of the feedback

in the these models:

 An immediate extension in the application developed would be to translate the

performance information along with the functional information, contained in the

Core Scenario Model and generate equivalent Stochastic Petri Net or other similar

performance models. This will help in further verifying the suitability and benefits

of CSM in different contexts.

 The Petri Net generated from CSM is in XML format and did not contain display

layout information. It would be very useful to display such Petri Nets in Petri Net

Tools.

 Performance information could also be added to Activity Diagrams and

equivalent Petri Nets could be generated.

Appendix

- 107 -

Appendices

A. Core Scenario Model Schema

<?xml version="1.0" encoding="UTF-8"?>
<!-- Core Scenario Model Schema version 0.22 -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- == -->
 <!-- CSM (root element) -->
 <!-- == -->
 <!-- contained elements: CSMElement -->
 <!-- optional attributes: name

 description

 author

 created

 version

 traceability_link -->
 <!-- == -->

 <xsd:element name="CSM" type="CSMType"/>
 <xsd:complexType name="CSMType">
 <xsd:sequence>
 <xsd:element ref="CSMElement" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="description" type="xsd:string"/>
 <xsd:attribute name="author" type="xsd:string"/>
 <xsd:attribute name="created" type="xsd:dateTime"/>
 <xsd:attribute name="version" type="xsd:string"/>
 <xsd:attribute name="traceability_link" type="xsd:string"/>
 </xsd:complexType>

 <!-- == -->
 <!-- CSMElement -->
 <!-- == -->
 <!-- required attributes: id, name -->
 <!-- optional attributes: traceability_link -->
 <!-- == -->

 <xsd:element name="CSMElement" type="CSMElementType" abstract="true"/>
 <xsd:complexType name="CSMElementType">
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="traceability_link" type="xsd:string"/>
 </xsd:complexType>

 <!-- == -->
 <!-- Scenario -->
 <!-- == -->
 <!-- inherits from: CSMElement -->
 <!-- contained elements: ScenarioElement -->
 <!-- optional attributes: description

Appendix

- 108 -

 probability

 transaction -->
 <!-- optional associations: refinement (Refinement IDs) -->
 <!-- == -->

 <xsd:element name="Scenario" type="ScenarioType" substitutionGroup="CSMElement"/>
 <xsd:complexType name="ScenarioType">
 <xsd:complexContent>
 <xsd:extension base="CSMElementType">
 <xsd:sequence>
 <xsd:element ref="ScenarioElement" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="description" type="xsd:string"/>
 <xsd:attribute name="probability" type="xsd:double"/>
 <xsd:attribute name="transaction" type="xsd:boolean"/>
 <xsd:attribute name="refinement" type="xsd:IDREFS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- ScenarioElement -->
 <!-- == -->
 <!-- required attributes: id, name -->
 <!-- optional attributes: traceability_link -->
 <!-- subtypes are: Step, PathConnection, Classifier -->
 <!-- == -->

 <xsd:element name="ScenarioElement" type="ScenarioElementType" abstract="true"/>
 <xsd:complexType name="ScenarioElementType">
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="traceability_link" type="xsd:string"/>
 </xsd:complexType>

 <!-- == -->
 <!-- Step -->
 <!-- == -->
 <!-- inherits from: ScenarioElement -->
 <!-- contained elements: PreCondition

 PostCondition

 InputSet

 OutputSet

 ResourceAcquire

 ResourceRelease

 Refinement -->
 <!-- optional attributes: description

 host_demand

 probability

 rep_count -->
 <!-- required associations: predecessor (PathConnection IDs)

Appendix

- 109 -

 successor (PathConnection IDs) -->
 <!-- optional associations: component (Component ID)

 parent (Scenario ID)

 extop (ExternalOperation IDs)

 perfMeasureTrigger (PerfMeasure IDs)

 perfMeasureEnd (PerfMeasure IDs) -->
 <!-- == -->

 <xsd:element name="Step" type="StepType" substitutionGroup="ScenarioElement"/>
 <xsd:complexType name="StepType">
 <xsd:complexContent>
 <xsd:extension base="ScenarioElementType">
 <xsd:sequence>
 <xsd:element ref="PreCondition" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="PostCondition" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="InputSet" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="OutputSet" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="ResourceAcquire" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="ResourceRelease" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="Refinement" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="description" type="xsd:string"/>
 <xsd:attribute name="host_demand" type="xsd:double"/>
 <xsd:attribute name="probability" type="xsd:double"/>
 <xsd:attribute name="rep_count" type="xsd:double"/>
 <xsd:attribute name="predecessor" type="xsd:IDREFS" use="required"/>
 <xsd:attribute name="successor" type="xsd:IDREFS" use="required"/>
 <xsd:attribute name="component" type="xsd:IDREF"/>
 <xsd:attribute name="extop" type="xsd:IDREFS"/>
 <xsd:attribute name="perfMeasureTrigger" type="xsd:IDREFS"/>
 <xsd:attribute name="perfMeasureEnd" type="xsd:IDREFS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- ResourceAcquire -->
 <!-- == -->
 <!-- inherits from: Step -->
 <!-- optional attributes: r_units

 priority -->
 <!-- required associations: acquire (GeneralResource ID) -->
 <!-- == -->

 <xsd:element name="ResourceAcquire" type="ResourceAcquireType" substitutionGroup="Step"/>
 <xsd:complexType name="ResourceAcquireType">
 <xsd:complexContent>
 <xsd:extension base="StepType">
 <xsd:attribute name="r_units" type="xsd:double"/>
 <xsd:attribute name="priority" type="xsd:string"/>
 <xsd:attribute name="acquire" type="xsd:IDREF" use="required"/>

Appendix

- 110 -

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- ResourceRelease -->
 <!-- == -->
 <!-- inherits from: Step -->
 <!-- optional attributes: r_units -->
 <!-- required associations: release (GeneralResource ID) -->
 <!-- == -->

 <xsd:element name="ResourceRelease" type="ResourceReleaseType" substitutionGroup="Step"/>
 <xsd:complexType name="ResourceReleaseType">
 <xsd:complexContent>
 <xsd:extension base="StepType">
 <xsd:attribute name="r_units" type="xsd:double"/>
 <xsd:attribute name="release" type="xsd:IDREF" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- PathConnection -->
 <!-- == -->
 <!-- required attributes: id -->
 <!-- optional attributes: traceability_link -->
 <!-- optional associations: source (Step IDs)

 target (Step IDs)

 classifier (Classifier IDs)

 subIn (InBinding IDs)

 subOut (OutBinding IDs) -->
 <!-- == -->

 <xsd:element name="PathConnection" type="PathConnectionType" abstract="true"
substitutionGroup="ScenarioElement"/>
 <xsd:complexType name="PathConnectionType">
 <xsd:complexContent>
 <xsd:extension base="ScenarioElementType">
 <xsd:attribute name="source" type="xsd:IDREFS"/>
 <xsd:attribute name="target" type="xsd:IDREFS"/>
 <xsd:attribute name="classifier" type="xsd:IDREFS"/>
 <xsd:attribute name="subIn" type="xsd:IDREFS"/>
 <xsd:attribute name="subOut" type="xsd:IDREFS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Sequence -->
 <!-- == -->
 <!-- inherits from: PathConnection -->
 <!-- == -->

 <xsd:element name="Sequence" type="SequenceType" substitutionGroup="PathConnection"/>
 <xsd:complexType name="SequenceType">
 <xsd:complexContent>
 <xsd:extension base="PathConnectionType"/>

Appendix

- 111 -

 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Branch -->
 <!-- == -->
 <!-- inherits from: PathConnection -->
 <!-- == -->

 <xsd:element name="Branch" type="BranchType" substitutionGroup="PathConnection"/>
 <xsd:complexType name="BranchType">
 <xsd:complexContent>
 <xsd:extension base="PathConnectionType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Merge -->
 <!-- == -->
 <!-- inherits from: PathConnection -->
 <!-- == -->

 <xsd:element name="Merge" type="MergeType" substitutionGroup="PathConnection"/>
 <xsd:complexType name="MergeType">
 <xsd:complexContent>
 <xsd:extension base="PathConnectionType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Fork -->
 <!-- == -->
 <!-- inherits from: PathConnection -->
 <!-- == -->

 <xsd:element name="Fork" type="ForkType" substitutionGroup="PathConnection"/>
 <xsd:complexType name="ForkType">
 <xsd:complexContent>
 <xsd:extension base="PathConnectionType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Join -->
 <!-- == -->
 <!-- inherits from: PathConnection -->
 <!-- == -->

 <xsd:element name="Join" type="JoinType" substitutionGroup="PathConnection"/>
 <xsd:complexType name="JoinType">
 <xsd:complexContent>
 <xsd:extension base="PathConnectionType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Start -->
 <!-- == -->
 <!-- inherits from: PathConnection -->
 <!-- contained elements: Workload -->
 <!-- optional associations: inBinding (InBinding IDs) -->
 <!-- == -->

Appendix

- 112 -

 <xsd:element name="Start" type="StartType" substitutionGroup="PathConnection"/>
 <xsd:complexType name="StartType">
 <xsd:complexContent>
 <xsd:extension base="PathConnectionType">
 <xsd:sequence>
 <!-- contained elements -->
 <xsd:element ref="Workload" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="inBinding" type="xsd:IDREFS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- End -->
 <!-- == -->
 <!-- inherits from: PathConnection -->
 <!-- optional associations: outBinding (OutBinding IDs) -->
 <!-- == -->

 <xsd:element name="End" type="EndType" substitutionGroup="PathConnection"/>
 <xsd:complexType name="EndType">
 <xsd:complexContent>
 <xsd:extension base="PathConnectionType">
 <xsd:attribute name="outBinding" type="xsd:IDREFS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- InputSet -->
 <!-- == -->
 <!-- contained elements: PreCondition -->
 <!-- required associations: predecessorSubset (PathConnection IDs) -->
 <!-- constraint: the predecessors are a subset of the parent step's -->
 <!-- predecessors -->
 <!-- == -->

 <xsd:element name="InputSet" type="InputSetType"/>
 <xsd:complexType name="InputSetType">
 <xsd:sequence>
 <xsd:element ref="PreCondition" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="predecessorSubset" type="xsd:IDREFS" use="required"/>
 </xsd:complexType>

 <!-- == -->
 <!-- OutputSet -->
 <!-- == -->
 <!-- contained elements: PostCondition -->
 <!-- required associations: successorSubset (PathConnection IDs) -->
 <!-- constraint: the successors are a subset of the parent step's -->
 <!-- successors -->
 <!-- == -->

 <xsd:element name="OutputSet" type="OutputSetType"/>
 <xsd:complexType name="OutputSetType">
 <xsd:sequence>
 <xsd:element ref="PostCondition" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="successorSubset" type="xsd:IDREFS" use="required"/>

Appendix

- 113 -

 </xsd:complexType>

 <!-- == -->
 <!-- Constraint -->
 <!-- == -->
 <!-- required attributes: expression -->
 <!-- == -->

 <xsd:element name="Constraint" type="ConstraintType" abstract="true"/>
 <xsd:complexType name="ConstraintType">
 <xsd:attribute name="expression" type="xsd:string" use="required"/>
 </xsd:complexType>

 <!-- == -->
 <!-- PreCondition -->
 <!-- == -->
 <!-- inherits from: Constraint -->
 <!-- == -->

 <xsd:element name="PreCondition" type="PreConditionType" substitutionGroup="Constraint"/>
 <xsd:complexType name="PreConditionType">
 <xsd:complexContent>
 <xsd:extension base="ConstraintType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- PostCondition -->
 <!-- == -->
 <!-- inherits from: Constraint -->
 <!-- == -->

 <xsd:element name="PostCondition" type="PostConditionType" substitutionGroup="Constraint"/>
 <xsd:complexType name="PostConditionType">
 <xsd:complexContent>
 <xsd:extension base="ConstraintType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Classifier -->
 <!-- == -->
 <!-- inherits from: ScenarioElement -->
 <!-- == -->

 <xsd:element name="Classifier" type="ClassifierType" substitutionGroup="ScenarioElement"/>
 <xsd:complexType name="ClassifierType">
 <xsd:complexContent>
 <xsd:extension base="ScenarioElementType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Message -->
 <!-- == -->
 <!-- inherits from: Classifier -->
 <!-- required attributes: kind -->
 <!-- optional attributes: size
 multi -->
 <!-- == -->

 <xsd:element name="Message" type="MessageType" substitutionGroup="Classifier"/>

Appendix

- 114 -

 <xsd:complexType name="MessageType">
 <xsd:complexContent>
 <xsd:extension base="ClassifierType">
 <xsd:attribute name="kind" type="MsgKind" default="async"/>
 <xsd:attribute name="size" type="xsd:double"/>
 <xsd:attribute name="multi" type="xsd:double"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- <<enumeration>> MsgKind -->
 <!-- == -->
 <!-- values: async | sync | reply -->
 <!-- == -->

 <xsd:simpleType name="MsgKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="async"/>
 <xsd:enumeration value="sync"/>
 <xsd:enumeration value="reply"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- == -->
 <!-- Refinement -->
 <!-- == -->
 <!-- contained elements: InBinding

 OutBinding -->
 <!-- optional attributes: selection_cond -->
 <!-- required associations: parent (Step ID)

 sub (Scenario ID) -->
 <!-- == -->

 <xsd:element name="Refinement" type="RefinementType"/>
 <xsd:complexType name="RefinementType">
 <xsd:sequence>
 <xsd:element ref="InBinding" maxOccurs="unbounded"/>
 <xsd:element ref="OutBinding" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="selection_cond" type="xsd:string"/>
 <xsd:attribute name="parent" type="xsd:IDREF" use="required"/>
 <xsd:attribute name="sub" type="xsd:IDREF" use="required"/>
 </xsd:complexType>

 <!-- == -->
 <!-- InBinding -->
 <!-- == -->
 <!-- required attributes: id -->
 <!-- required associations: in (PathConnection ID)

 start (Start ID) -->
 <!-- == -->

 <xsd:element name="InBinding" type="InBindingType"/>
 <xsd:complexType name="InBindingType">
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="in" type="xsd:IDREF" use="required"/>
 <xsd:attribute name="start" type="xsd:IDREF" use="required"/>
 </xsd:complexType>

Appendix

- 115 -

 <!-- == -->
 <!-- OutBinding -->
 <!-- == -->
 <!-- required attributes: id -->
 <!-- required associations: end (End ID)

 out (PathConnection ID) -->
 <!-- == -->

 <xsd:element name="OutBinding" type="OutBindingType"/>
 <xsd:complexType name="OutBindingType">
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="end" type="xsd:IDREF" use="required"/>
 <xsd:attribute name="out" type="xsd:IDREF" use="required"/>
 </xsd:complexType>

 <!-- == -->
 <!-- GeneralResource -->
 <!-- == -->
 <!-- inherits from: CSMElement -->
 <!-- optional attributes: multiplicity

 sched_policy -->
 <!-- optional associations: perfMeasure (PerfMeasure IDs) -->
 <!-- == -->

 <xsd:element name="GeneralResource" type="GeneralResourceType" abstract="true"
substitutionGroup="CSMElement"/>
 <xsd:complexType name="GeneralResourceType">
 <xsd:complexContent>
 <xsd:extension base="CSMElementType">
 <xsd:attribute name="multiplicity" type="xsd:int"/>
 <xsd:attribute name="sched_policy" type="xsd:string"/>
 <xsd:attribute name="perfMeasure" type="xsd:IDREFS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- PassiveResource -->
 <!-- == -->
 <!-- inherits from: GeneralResource -->
 <!-- == -->

 <xsd:element name="PassiveResource" type="PassiveResourceType"
substitutionGroup="GeneralResource"/>
 <xsd:complexType name="PassiveResourceType">
 <xsd:complexContent>
 <xsd:extension base="GeneralResourceType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- Component -->
 <!-- == -->
 <!-- inherits from: PassiveResource -->
 <!-- optional attributes: is_active -->
 <!-- optional associations: host (ProcessingResource ID)

 parent (Component ID)

Appendix

- 116 -

 sub (Component IDs) -->
 <!-- == -->

 <xsd:element name="Component" type="ComponentType" substitutionGroup="PassiveResource"/>
 <xsd:complexType name="ComponentType">
 <xsd:complexContent>
 <xsd:extension base="PassiveResourceType">
 <xsd:attribute name="is_active_process" type="xsd:boolean"/>
 <xsd:attribute name="host" type="xsd:IDREF" use="required"/>
 <xsd:attribute name="parent" type="xsd:IDREF"/>
 <xsd:attribute name="sub" type="xsd:IDREFS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- ActiveResource -->
 <!-- == -->
 <!-- inherits from: GeneralResource -->
 <!-- optional attributes: operation_time -->
 <!-- == -->

 <xsd:element name="ActiveResource" type="ActiveResourceType" substitutionGroup="GeneralResource"/>
 <xsd:complexType name="ActiveResourceType">
 <xsd:complexContent>
 <xsd:extension base="GeneralResourceType">
 <xsd:attribute name="op_time" type="xsd:double"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- ProcessingResource -->
 <!-- == -->
 <!-- inherits from: ActiveResource -->
 <!-- == -->

 <xsd:element name="ProcessingResource" type="ProcessingResourceType"
substitutionGroup="ActiveResource"/>
 <xsd:complexType name="ProcessingResourceType">
 <xsd:complexContent>
 <xsd:extension base="ActiveResourceType"/>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- ExternalOperation -->
 <!-- == -->
 <!-- inherits from: ActiveResource -->
 <!-- optional attributes: description -->
 <!-- == -->

 <xsd:element name="ExternalOperation" type="ExternalOperationType"
substitutionGroup="ActiveResource"/>
 <xsd:complexType name="ExternalOperationType">
 <xsd:complexContent>
 <xsd:extension base="ActiveResourceType">
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Appendix

- 117 -

 <!-- == -->
 <!-- Workload -->
 <!-- == -->
 <!-- optional attributes: arrival_pattern

 arrival_param1

 arrival_param2

 external_delay

 value

 coeff_var_sq

 description

 traceability_link -->
 <!-- optional associations: response_time (PerfMeasure IDs) -->
 <!-- == -->

 <xsd:element name="Workload" type="WorkloadType" abstract="true"/>
 <xsd:complexType name="WorkloadType">
 <xsd:attribute name="id" type="xsd:ID" use="required"/>
 <xsd:attribute name="arrival_pattern" type="ArrivalProcess" default="poissonPDF"/>
 <xsd:attribute name="arrival_param1" type="xsd:double"/>
 <xsd:attribute name="arrival_param2" type="xsd:double"/>
 <xsd:attribute name="external_delay" type="xsd:double"/>
 <xsd:attribute name="value" type="xsd:double"/>
 <xsd:attribute name="coeff_var_sq" type="xsd:double"/>
 <xsd:attribute name="description" type="xsd:string"/>
 <xsd:attribute name="traceability_link" type="xsd:string"/>
 <xsd:attribute name="responseTime" type="xsd:IDREFS"/>
 </xsd:complexType>

 <!-- == -->
 <!-- ClosedWorkload -->
 <!-- == -->
 <!-- inherits from: Workload -->
 <!-- required attributes: population -->
 <!-- == -->

 <xsd:element name="ClosedWorkload" type="ClosedWorkloadType" substitutionGroup="Workload"/>
 <xsd:complexType name="ClosedWorkloadType">
 <xsd:complexContent>
 <xsd:extension base="WorkloadType">
 <xsd:attribute name="population" type="xsd:int" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- OpenWorkload -->
 <!-- == -->
 <!-- inherits from: Workload -->
 <!-- == -->

 <xsd:element name="OpenWorkload" type="OpenWorkloadType" substitutionGroup="Workload"/>
 <xsd:complexType name="OpenWorkloadType">
 <xsd:complexContent>
 <xsd:extension base="WorkloadType"/>
 </xsd:complexContent>

Appendix

- 118 -

 </xsd:complexType>

 <!-- == -->
 <!-- <<enumeration>> ArrivalProcess -->
 <!-- == -->
 <!-- values: poissonPDF | periodic | uniform | phase_type -->
 <!-- (not included: bounded, bursty, bernoulli, binomial) -->
 <!-- == -->

 <xsd:simpleType name="ArrivalProcess">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="poissonPDF"/>
 <xsd:enumeration value="periodic"/>
 <xsd:enumeration value="uniform"/>
 <xsd:enumeration value="phase_type"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- == -->
 <!-- PerfMeasure -->
 <!-- == -->
 <!-- contained elements: PerfValue -->
 <!-- required attributes: measure_type -->
 <!-- optional association: trigger (Step ID) -->
 <!-- optional association: end (Step ID) -->
 <!-- optional association: duration (Workload ID) -->
 <!-- optional association: resource (GeneralResource ID) -->
 <!-- constraint: one of trigger, duration, or resource is required. -->
 <!-- constraint: end can only be appear if trigger is present. -->
 <!-- == -->

 <xsd:element name="PerfMeasure" type="PerfMeasureType" substitutionGroup="CSMElement"/>
 <xsd:complexType name="PerfMeasureType">
 <xsd:complexContent>
 <xsd:extension base="CSMElementType">
 <xsd:sequence>
 <xsd:element ref="PerfValue" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="measure" type="PerfAttribute" default="delay"/>
 <xsd:attribute name="trigger" type="xsd:IDREF"/>
 <xsd:attribute name="end" type="xsd:IDREF"/>
 <xsd:attribute name="duration" type="xsd:IDREF"/>
 <xsd:attribute name="resource" type="xsd:IDREF"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- == -->
 <!-- PerfValue -->
 <!-- == -->
 <!-- required attributes: value -->
 <!-- optional attributes: source

 kind

 percentile

 kth_moment -->
 <!-- == -->

 <xsd:element name="PerfValue" type="PerfValueType"/>

Appendix

- 119 -

 <xsd:complexType name="PerfValueType">
 <xsd:attribute name="value" type="xsd:string" use="required"/>
 <xsd:attribute name="kind" type="PerfValueKind" default="mean"/>
 <xsd:attribute name="source" type="PerfValueSource" default="required"/>
 <xsd:attribute name="percentile" type="xsd:string"/>
 <xsd:attribute name="kth_moment" type="xsd:string"/>
 </xsd:complexType>

 <!-- == -->
 <!-- <<enumeration>> PerfValueKind -->
 <!-- == -->
 <!-- values: mean | variance | percentile | moment | min | max | distribution -->
 <!-- == -->

 <xsd:simpleType name="PerfValueKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="mean"/>
 <xsd:enumeration value="variance"/>
 <xsd:enumeration value="percentile"/>
 <xsd:enumeration value="moment"/>
 <xsd:enumeration value="min"/>
 <xsd:enumeration value="max"/>
 <xsd:enumeration value="distribution"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- == -->
 <!-- <<enumeration>> PerfValueSource -->
 <!-- == -->
 <!-- values: required | assumed | predicted | measured -->
 <!-- == -->

 <xsd:simpleType name="PerfValueSource">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="required"/>
 <xsd:enumeration value="assumed"/>
 <xsd:enumeration value="predicted"/>
 <xsd:enumeration value="measured"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!-- == -->
 <!-- <<enumeration>> PerfAttribute -->
 <!-- == -->
 <!-- values: delay | throughput | utilization | interval | wait -->
 <!-- == -->

 <xsd:simpleType name="PerfAttribute">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="delay"/>
 <xsd:enumeration value="throughput"/>
 <xsd:enumeration value="utilization"/>
 <xsd:enumeration value="interval"/>
 <xsd:enumeration value="wait"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Appendix

- 120 -

B. Colored Petri Nets Document Type Definition (DTD)

<!--
 COPYRIGHT (C) 2002 by the CPN group, University of Aarhus, Denmark.

 Contact: cpntools-support@daimi.au.dk
 WWW URL: http://www.daimi.au.dk/CPNtools/

 File: cpn.dtd
 DTD for XML format for CPN Tools ver. 1.0.0
 20031121: Updated with hidden attribute for marking.
 (Comming in version 1.0.1)
 20030120: Updated with token and marking elements for places.
 (Comming in version 0.1.48)

 Note: For CPN Tools ver. 0.1.47 the format attribute of the
 generator tag must be "2".
-->

<!-- The possible orientations of an arc:
 bothdir = Bidirectional arc: O<->[]
 nodir = Arc without arrows: O-[]
 ptot = Arc from Place to Transition: 0->[]
 ttop = Arc from Transition to Place: []->O -->
<!ENTITY % arcors "CDATA">

<!-- Boolean values -->
<!ENTITY % boolean "(true | false)">

<!-- Colours. These colours corresponds to the standard colours of
 HTML:
 Name and RGB value:
 black = #000000 green = #008000
 silver = #c0c0c0 lime = #00ff00
 gray = #808080 olive = #808000
 white = #ffffff yellow = #ffff00
 maroon = #800000 navy = #000080
 red = #ff0000 blue = #0000ff
 purple = #800080 teal = #008080
 fuchsia= #ff00ff aqua = #00ffff -->
<!ENTITY % cols "CDATA">

<!-- Types of declarations -->
<!ENTITY % decls "block | color | var | ml | globref">

<!-- Line types: -->
<!ENTITY % lintyps "CDATA">

<!-- Numbers -->
<!ENTITY % number "CDATA">

<!-- Possible attributes of objects:
 posattr = Position attributes
 fillattr = Fill Attributes
 lineattr = Line Attributes
 textattr = Text Attributes -->
<!ENTITY % objatts "posattr, fillattr, lineattr, textattr">

<!-- Possible fill patterns for objects -->
<!ENTITY % pats "CDATA">

Appendix

- 121 -

<!-- Possible porttypes:
 in = Input Port.
 out = Output Port.
 inout = Input/Output Port
 general = General Port -->
<!ENTITY % prttyps "CDATA">

<!ELEMENT alias (id)?>

<!ELEMENT and (ml)+>

<!ELEMENT annot (%objatts;, text)>
<!ATTLIST annot id ID #IMPLIED>

<!ELEMENT arc (%objatts;, arrowattr, transend, placeend, ((annot?, bendpoint*)|
 (bendpoint*, annot?)))>
<!ATTLIST arc id ID #IMPLIED
 orientation %arcors; #IMPLIED>

<!ELEMENT arrowattr EMPTY>
<!ATTLIST arrowattr headsize %number; #IMPLIED
 currentcyckle %number; #IMPLIED>

<!ELEMENT Aux (%objatts;, label, text)>
<!ATTLIST Aux id ID #IMPLIED>

<!ELEMENT bendpoint (%objatts;, text)>
<!ATTLIST bendpoint id ID #IMPLIED
 serial %number; #IMPLIED>

<!ELEMENT block (id, (%decls;)*)>
<!ATTLIST block id ID #IMPLIED>

<!ELEMENT bool (with)?>

<!ELEMENT box EMPTY>
<!ATTLIST box w %number; #IMPLIED
 h %number; #IMPLIED>

<!ELEMENT by (ml)>

<!ELEMENT color (id, declare?, timed?, (unit | bool | int | real | string |
 enum | index | product | record | list |
 union | alias | subset)*)>
<!ATTLIST color id ID #IMPLIED>

<!ELEMENT code (%objatts;, text)>
<!ATTLIST code id ID #IMPLIED>

<!ELEMENT code-key (%objatts;, text)>
<!ATTLIST code-key id ID #IMPLIED>

<!ELEMENT cond (%objatts;, text)>
<!ATTLIST cond id ID #IMPLIED>

<!ELEMENT cpnet (globbox, page*, fusion*)>

<!ELEMENT declare (id)+>

<!ELEMENT ellipse EMPTY>
<!ATTLIST ellipse w %number; #IMPLIED

Appendix

- 122 -

 h %number; #IMPLIED>

<!ELEMENT enum (id)+>

<!ELEMENT fillattr EMPTY>
<!ATTLIST fillattr colour %cols; #IMPLIED
 pattern %pats; #IMPLIED
 filled %boolean; #IMPLIED>

<!ELEMENT fusion (fusion_elm*)>
<!ATTLIST fusion id ID #IMPLIED
 name CDATA #IMPLIED>

<!ELEMENT fusion_elm EMPTY>
<!ATTLIST fusion_elm idref IDREF #IMPLIED>

<!ELEMENT fusioninfo (%objatts;)>
<!ATTLIST fusioninfo id ID #IMPLIED
 name CDATA #IMPLIED>

<!ELEMENT generator EMPTY>
<!ATTLIST generator tool CDATA #IMPLIED
 version CDATA #IMPLIED
 format CDATA #IMPLIED>

<!-- Note: format must be "2" for CPN Tools ver. 0.1.47 -->

<!ELEMENT globbox (%decls;)*>

<!ELEMENT globref ((id)?, (ml)?)>
<!ATTLIST globref id ID #IMPLIED>

<!ELEMENT group_elm EMPTY>
<!ATTLIST group_elm idref IDREF #IMPLIED>

<!ELEMENT group (group_elm)*>
<!ATTLIST group id ID #IMPLIED
 name CDATA #IMPLIED>

<!ELEMENT guideline_elm EMPTY>
<!ATTLIST guideline_elm idref IDREF #IMPLIED>

<!ELEMENT hguideline (guideline_elm)*>
<!ATTLIST hguideline id ID #IMPLIED
 y %number; #IMPLIED>

<!ELEMENT id (#PCDATA)>

<!ELEMENT index (ml, ml, id)>

<!ELEMENT initmark (%objatts;, text)>
<!ATTLIST initmark id ID #IMPLIED>

<!ELEMENT int (with)?>

<!ELEMENT label EMPTY>
<!ATTLIST label w %number; #IMPLIED
 h %number; #IMPLIED>

<!ELEMENT lineattr EMPTY>
<!ATTLIST lineattr colour %cols; #IMPLIED
 thick %number; #IMPLIED

Appendix

- 123 -

 type %lintyps; #IMPLIED>

<!ELEMENT list ((with)?, id)>

<!ELEMENT marking EMPTY>
<!ATTLIST marking x %number; #IMPLIED
 y %number; #IMPLIED
 hidden %boolean; #IMPLIED>

<!ELEMENT ml (#PCDATA)>
<!ATTLIST ml id ID #IMPLIED>

<!ELEMENT page (pageattr, (trans | place | arc | Aux | vguideline | hguideline | group)*)>
<!ATTLIST page id ID #IMPLIED>

<!ELEMENT pageattr EMPTY>
<!ATTLIST pageattr name CDATA #IMPLIED>

<!ELEMENT place (%objatts;, text, ellipse, (token | marking | fusioninfo | port | type | initmark)*)>
<!ATTLIST place id ID #IMPLIED>

<!ELEMENT placeend EMPTY>
<!ATTLIST placeend idref IDREF #IMPLIED>

<!ELEMENT port (%objatts;)>
<!ATTLIST port id ID #IMPLIED
 type %prttyps; #IMPLIED>

<!ELEMENT posattr EMPTY>
<!ATTLIST posattr x %number; #IMPLIED
 y %number; #IMPLIED>

<!ELEMENT product (id)+>

<!ELEMENT real (with)?>

<!ELEMENT record (recordfield)+>

<!ELEMENT recordfield (id,id)>

<!ELEMENT string (with)?>

<!ELEMENT subset (id?, (with | by))>

<!ELEMENT subst EMPTY>
<!ATTLIST subst subpage IDREF #IMPLIED
 portsock CDATA #IMPLIED>

<!ELEMENT text (#PCDATA)>

<!ELEMENT textattr EMPTY>
<!ATTLIST textattr colour %cols; #IMPLIED
 bold %boolean; #IMPLIED>

<!ELEMENT time (%objatts;, text)>
<!ATTLIST time id ID #IMPLIED>

<!ELEMENT timed EMPTY>

<!ELEMENT token EMPTY>
<!ATTLIST token x %number; #IMPLIED
 y %number; #IMPLIED>

Appendix

- 124 -

<!ELEMENT trans (%objatts;, text, box, subst?, (time | cond | code-key | code)*)>
<!ATTLIST trans id ID #IMPLIED>

<!ELEMENT transend EMPTY>
<!ATTLIST transend idref IDREF #IMPLIED>

<!ELEMENT type (id | (%objatts;, text))>
<!ATTLIST type id ID #IMPLIED>

<!ELEMENT union (unionfield)+>

<!ELEMENT unionfield (id, (type)?)>

<!ELEMENT unit (with)?>

<!ELEMENT var (type, id+)>
<!ATTLIST var id ID #IMPLIED>

<!ELEMENT vguideline (guideline_elm)*>
<!ATTLIST vguideline id ID #IMPLIED
 x %number; #IMPLIED>

<!ELEMENT with ((ml, (ml?|and))|(id,(id)?))>

<!ELEMENT workspaceElements (generator, cpnet)>

Appendix

- 125 -

C. Graphical Views of CSM Schema and Petri Nets DTD

The Figures included in this appendix have been prepared to view the tree structure of
XML Schema for CSM. To graphically view the Structure of DTD it was first converted
to XML Schema using the tool XMLSpy. These diagrams have also been prepared with
XMLSpy tool and show attributes and the elements contained with in the CSM Schema
and Petri Net DTD at different levels.

Graphical view of CSM tree at level 1 and 2

Appendix

- 126 -

Graphical view of CSM tree at level 2 and 3

Appendix

- 127 -

Graphical view of CSM tree at level 3 and 4

Appendix

- 128 -

Graphical view of CSM tree at level 4 and 5

Appendix

- 129 -

Path connections graphical view with attributes

Appendix

- 130 -

Starts graphical view with attributes

Ends graphical view with attributes

Appendix

- 131 -

Sequence graphical view with attributes

Branch graphical view with attributes

Appendix

- 132 -

Merges graphical view with attributes

Forks graphical view with attributes

Appendix

- 133 -

Joins graphical view with attributes

Graphical Views of Petri Net DTD

Graphical view of Petri Net tree at level 1, 2 and 3

Appendix

- 134 -

Graphical view of Petri Net tree at level 3 and 4

Appendix

- 135 -

Partial graphical view of Petri Net tree at level 4, 5 and 6

Appendix

- 136 -

Partial graphical view of Petri Net tree at level 4 and 5

Partial graphical view of Petri Net tree at level 4 and 5

Appendix

- 137 -

D. Petri Net representation of Transformed CSM discussed as Case
Study 1

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE workspaceElements PUBLIC "-//CPN/DTD CPNXML 1.0 //EN"

"http://www.daimi.au.dk/~cpntools/bin/DTD/2/cpn.dtd">

<workspaceElements>

<generator tool="CPN Tools" version="1.0.4" format="2"/>

<cpnet>

<globbox>

<block id="IDP1">

<id>Standard declarations</id>

<color id="IDP2">

<id>E</id>

<enum>

<id>e</id>

</enum>

</color>

<color id="IDP3">

<id>INT</id>

<int/>

</color>

<color id="IDP4">

<id>Bool</id>

<bool/>

</color>

<color id="IDP5">

<id>String</id>

<string/>

Appendix

- 138 -

</color>

</block>

</globbox>

<page id="m0">

<pageattr name="New Page"/>

<place id="h0">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Request</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h1" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h0"/>

<placeend idref="h2"/>

</arc>

<trans id="h2">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

Appendix

- 139 -

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Sorig</text>

<box w="20.00" h="15.00"/>

<subst subpage="m1" portsock="(h1)(h3 h4)"/>

</trans>

<arc id="h4" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h2"/>

<placeend idref="h5"/>

</arc>

<place id="h5">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Notify</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h3" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

Appendix

- 140 -

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h2"/>

<placeend idref="ID1"/>

</arc>

<place id="ID1">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>dummy</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="ID2" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="ID1"/>

<placeend idref="h6"/>

</arc>

<trans id="h6">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

Appendix

- 141 -

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Sterm</text>

<box w="20.00" h="15.00"/>

<subst subpage="m2" portsock="(h3)(h7 h9 h13)"/>

</trans>

<arc id="h7" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h6"/>

<placeend idref="h8"/>

</arc>

<place id="h8">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Ring</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h9" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

Appendix

- 142 -

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h6"/>

<placeend idref="ID3"/>

</arc>

<place id="ID3">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>dummy</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="ID4" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="ID3"/>

<placeend idref="h10"/>

</arc>

<trans id="h10">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

Appendix

- 143 -

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Fwd_sig</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h11" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h10"/>

<placeend idref="h12"/>

</arc>

<place id="h12">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Busy</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h13" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

Appendix

- 144 -

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h6"/>

<placeend idref="ID5"/>

</arc>

<place id="ID5">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>dummy</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="ID6" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="ID5"/>

<placeend idref="h14"/>

</arc>

<trans id="h14">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

Appendix

- 145 -

<textattr colour="Black" bold="false"/>

<text>Fwd_sig</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h15" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h14"/>

<placeend idref="h16"/>

</arc>

<place id="h16">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Ringing</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

</page>

<page id="m1">

<pageattr name="New Page"/>

Appendix

- 146 -

<place id="h17">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Start</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h18" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h17"/>

<placeend idref="h19"/>

</arc>

<trans id="h19">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Check OCS</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h20" orientation="TtoP">

Appendix

- 147 -

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h19"/>

<placeend idref="h21"/>

</arc>

<place id="h21">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text> </text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h22" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h21"/>

<placeend idref="h23"/>

</arc>

<trans id="h23">

Appendix

- 148 -

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Deny</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h24" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h23"/>

<placeend idref="h25"/>

</arc>

<place id="h25">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Fail</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h26" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

Appendix

- 149 -

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h21"/>

<placeend idref="ID7"/>

</arc>

<trans id="ID7">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>dummy</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="ID8" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="ID7"/>

<placeend idref="h27"/>

</arc>

<place id="h27">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

Appendix

- 150 -

<textattr colour="Black" bold="false"/>

<text>Success</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

</page>

<page id="m2">

<pageattr name="New Page"/>

<place id="h28">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Start</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h29" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h28"/>

<placeend idref="ID9"/>

Appendix

- 151 -

</arc>

<trans id="ID9">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>dummy</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="ID10" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="ID9"/>

<placeend idref="h30"/>

</arc>

<place id="h30">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text> </text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

Appendix

- 152 -

<arc id="h32" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h30"/>

<placeend idref="h33"/>

</arc>

<trans id="h33">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Busy Treatment</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h34" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h33"/>

<placeend idref="h35"/>

</arc>

<place id="h35">

Appendix

- 153 -

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Fail</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h31" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h30"/>

<placeend idref="h36"/>

</arc>

<trans id="h36">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Step</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h38" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

Appendix

- 154 -

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h36"/>

<placeend idref="ID11"/>

</arc>

<place id="ID11">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>dummy</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="ID12" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="ID11"/>

<placeend idref="h39"/>

</arc>

<trans id="h39">

<posattr x="0.00" y="0.00"/>

Appendix

- 155 -

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Ringing Treatment</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h40" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h39"/>

<placeend idref="h41"/>

</arc>

<place id="h41">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Report Success</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="h37" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

Appendix

- 156 -

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h36"/>

<placeend idref="ID13"/>

</arc>

<place id="ID13">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>dummy</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

<arc id="ID14" orientation="PtoT">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="ID13"/>

<placeend idref="h42"/>

</arc>

<trans id="h42">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

Appendix

- 157 -

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Ring Treatment</text>

<box w="20.00" h="15.00"/>

</trans>

<arc id="h43" orientation="TtoP">

<posattr x="0.000000" y="0.000000"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<arrowattr headsize="1.200000" currentcyckle="2"/>

<transend idref="h42"/>

<placeend idref="h44"/>

</arc>

<place id="h44">

<posattr x="0.00" y="0.00"/>

<fillattr colour="White" pattern="" filled="false"/>

<lineattr colour="Black" thick="1" type="Solid"/>

<textattr colour="Black" bold="false"/>

<text>Success</text>

<ellipse w="20.00" h="15.00"/>

<token x="0.00000" y="0.00000"/>

<marking x="0.00000" y="0.00000" hidden="false"/>

</place>

</page>

</cpnet>

</workspaceElements>

References

- 158 -

References

[1] Amyot D, Specification and validation of telecommunication systems with use case

maps and lotos; http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/da_phd.pdf

[2] Amyot D, Use Case Maps Quick Tutorial, See

http://www.usecasemaps.org/pub/UCMtutorial/UCMtutorial.pdf

[3] Bock, C., UML 2 Activity and Action Models, in Journal of Object Technology, vol.

2, no. 4, July-August 2003, pp. 43-53.

[4] Bock, C., UML Without Pictures, to appear in IEEE Software Special Issue on

Model-driven Development, September/October 2003.

[5] Bock, C., UML 2 Activity and Action Models, Part 2: Actions, in Journal of Object

Technology, vol. 2, no. 5, September-October 2003, pp. 41-56.

http://www.jot.fm/issues/issue_2003_09/column4

[6] Bock, C., UML 2 Activity and Action Models, Part 3: Control nodes, in Journal of

Object Technology, vol. 2, no. 6, November-December 2003,

http://www.jot.fm/issues/issue_2003_11/column1

[7] Bock, C., UML 2 Activity and Action Models, Part 4: Object nodes, in Journal of

Object Technology, vol. 3, no. 1, January-February 2004,

http://www.jot.fm/issues/issue_2004_01/column3

[8] Bock, C., UML 2 Activity and Action Models, Part 5: Object nodes, in Journal of

Object Technology, vol. 3, no. 7, July-August 2004,

http://www.jot.fm/issues/issue_2004_07/column4

[9] Booch, G., Object-Oriented Analysis and Design with Applications (2nd ed.),

Benjamin/Cummings, Redwood City, 1994.

[10] Booch, G., Rumbaugh, J. & Jacobson, I., The Unified modeling language user guide,

Reading, Mass., Addison-Wesley. 1999.

[11] Buhr, R.J.A. (1998) “Use Case Maps as Architectural Entities for Complex

Systems”. In: IEEE Transactions on Software Engineering, Special Issue on Scenario

Management. Vol. 24, No. 12, December 1998, 1131-1155.

http://www.UseCaseMaps.org/pub/tse98final.pdf

[12] CPN tools at University of Aarhus, http://wiki.daimi.au.dk/cpntools/cpntools.wiki

References

- 159 -

[13] C. U. Smith and L. G. Williams, Performance Solutions. Addison-Wesley, 2002.

[14] Dorin B. Petriu, Murray Woodside, A Metamodel for Generating Performance

models from UML Designs; 7th International Conference on Unified Modeling Language,

Lisbon, Portugal, 2004, pp. 41-53

[15] D.C. Petriu and H. Shen, Applying the UML Performance Profile: Graph Grammar-

based derivation of LQN models from UML specifications, in Proc. 12th Int. Conf. on

Modeling Tools and Techniques for Computer and Communication System Performance

Evaluation, London, England, 2002.

[16] Garrido Jose Luis, Gea Miguel. A Coloured Petri Net Formalisation for a UML-

Based Notation Applied to Cooperative System Modelling In Interactive Systems.

Design, Specification, and Verification, Revised Papers of the 9th International

Workshop (DSV-IS 2002), Rostock, Germany, June 12-14, 2002, pages 16-28. Volume

2545 of Lecture Notes in Computer Science / P. Forbrig, Q. Limbourg, B. Urban, J.

Vanderdonckt (Eds.) , Springer Verlag, December 2002.

[17] Gregor v. Bochmann, Activity Nets; A UML profile for modeling workflow and

business processes:

http://beethoven.site.uottawa.ca/dsrg/PublicDocuments/Publications/Boch00d.pdf.

[18] HyperModel: http://update.xmlmodeling.com/updates/

[19] http://www.daimi.au.dk/CPnets/intro/verybrief.html

[20] Juan Pablo Lopez-Grao, Jose Merseguer, Javier Campos, From UML Activity

Diagrams To Stochastic Petri Nets:Application To Software Performance Engineering;

In: Proceedings of the Fourth International Workshop on Software and Performance

(WOSP'04), ACM, Redwood City, California, USA, pages 25-36. January 2004.

[21] Kurt Jensen, A Brief Introduction to Coloured Petri Nets , Computer Science

Department, University of Aarhus , http://www.daimi.aau.dk/~kjensen/

[22] MDA Guide Version 1.0.1 http://www.omg.org/docs/omg/03-06-01.pdf

[23] Miga, A. (1998) Application of Use Case Maps to System Design with Tool

Support. M.Eng. thesis, Dept. of Systems and Computer Engineering, Carleton

University, Ottawa, Canada. http://www.UseCaseMaps.org/pub/am_thesis.pdf

[24] Murray Woodside A Metamodel for Generating Performance Models from UML

Designs

References

- 160 -

[25] Nicholas Chase, Understanding DOM, July 2003, http://www-

106.ibm.com/developerworks/edu/x-dw-xudom-i.html

[26] Object Management Group, UML 2.0 Superstructure Specification,

http://www.omg.org/cgi-bin/doc?ptc/03-08-02, August 2003.

[27] Object Management Group, UML Profile for Schedulability, Performance, and Time

Specification, OMG Adopted Specification ptc/02-03-02, July 1, 2002

[28] Object Management Group, XML Metadata Interchange Specification, January

2003; http://www.omg.org/technology/documents/formal/xmi.htm.

[29] Quatrani, T., Visual modeling with rational rose and UML, Reading Mass., Addison-

Wesley. 1998.

[30] Stephen J. Mellor, Kendall Scott, Axel Uhl, Dirk Weise, Introduction to Model

Driven Architecture: http://www.informit.com/articles/article.asp?p=170798&rl=1

[31] Stephen J. Mellor, Kendall Scott, Axel Uhl, Dirk Weise: MDA Distilled, Principles

of model drive architecture, 2004.

[32] Toqueer Israr: Master’s Thesis under preparation at Carleton University Ottawa.

[33] W3 Consortium (1998) Extensible Markup Language (XML) 1.0. W3C

Recommendation, 10 February 1998. http://www.w3.org/TR/REC-xml

[34] W. Reisig, Humboldt University of Berlin; An Informal introduction to Petri nets, in

Lecture Notes in Computer Science, Vol. 1491: Lectures on Petri Nets I: Basic Models.

Springer-Verlag, 1998.

[35] W.M.P. van der Aalst, The Application of Petri Nets to Workflow Management, in

the Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

[36] World Wide Web Consortium, See http://www.w3c.org.

[37] Yong Xiang Zeng, Transforming Use Case Maps to the Core Scenario Model

Representation; http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/

